

42-60 Railway Parade Burwood Place Development Burwood

Traffic Impact Assessment Staged Construction

for

BURWOOD TOWER HOLDINGS Pty Ltd

Our Reference 20250747 Revision 1 23 June 2025

COPYRIGHT

© Road Delay Solutions Pty Ltd A.B.N. 40 127 220 964 All rights reserved

The information contained within this document, produced by Road Delay Solutions Pty Ltd, is solely for the use of the Client identified, for the purpose for which it has been prepared. Road Delay Solutions Pty Ltd undertakes no duty to, or accepts any responsibility for, use of this document by any third party who may rely upon information contained within. No section, nor any element of this document, may be removed, reproduced, electronically stored or transmitted in any form, without the written permission of Road Delay Solutions Pty Ltd.

DISCLAIMER

Road Delay Solutions Pty Ltd assumes no responsibility or liability for the predictive nature of any traffic volumes, and resultant conclusions, detailed in this document. The modelling projections are subject to significant uncertainties and unanticipated change, without notice. While all source data, employed in the preparation of this document, has been diligently collated and checked, Road Delay Solutions Pty Ltd is unable to assume responsibility for any errors resulting from such projections.

D:\Documents\Burwood Place 2024\Stage 1\Report\Traffic Impact Assessment 23 06 2025.Docx

ROAD DELAY SOLUTIONS Pty Ltd

9/81-83 OCEAN BEACH ROAD | WOY WOY NSW 2256 | AUSTRALIA

M 0414 800 912 E gyarley@bigpond.com W https://gyarley0.wixsite.com/roaddelaysolutions

CONTENTS

ABBI	REVIATION	VS	4
1	INTRODU	UCTION	7
	1.1 G	Seneral	7
	1.2 R	oad Hierarchy	8
	1.3 Bu	urwood Road	9
	1.4 Ra	ailway Parade	9
	1.5 W	/ynne Avenue	10
	1.6 Be	elmore Street	10
	1.7 C	Clarendon Place	11
	1.8 C	Conder Street	11
	1.9 H	ornsey Street	12
2	CURREN	IT APPROVALS	13
	2.1 G	Seneral	13
3	S4.55 LA	ND USE MODIFICATIONS	14
4	S4.55 VE	HICLE GENERATION	15
5	BURWO	OD PLACE CONSTRUCTION STAGING	17
6	2025 TRA	AFFIC COUNTS	19
7	2025 TEN	MPORARY WYNNE AVENUE CLOSURE	20
8	2028 STA	AGE 1 COMPLETED	32
9	2030 STA	AGE 2 COMPLETED	44
10	CONCL	USION	55
APPI	ENDIX A –	Year 2025 Traffic Counts by MATRIX	59
APPI	ENDIX B –	Movement Summaries	61
	2025 AM	Peak Existing	61
	2025 PM	Peak Existing	69
	2025 AM	Peak Temporary Wynne Avenue Closure	77
	2025 PM	Peak Temporary Wynne Avenue Closure	85
	2028 AM	Peak Stage 1 Completed	93
	2028 PM	Peak Stage 1 Completed	102

2030 AM Peak Stage 2 Completed	111
2030 PM Peak Stage 2 Completed	118
APPENDIX C – Performance Indicators	127
Level of Service (LoS)	127
Average Vehicle Delay (AVD)	
Degree of Saturation (DS)	128

FIGURES

Figure 1	General Study Area	7
Figure 2	Road Hierarchy	8
Figure 3	Staged Construction Showing Adopted O/D	18
Figure 4	Temporary Closure of Wynne Avenue	20
Figure 5	2028 Stage 1 Road Network	33
Figure 6	2030 Stage 2 Road Network	44

TABLES

Table 1	S4.55 Land Use Variation to Approved DA	15
Table 2	S4.55 Vehicle Generation Comparison to Approved DA	16
Table 3	Vehicle Generation by Staged Construction	18
Table D 4	Performance Indicators by Control Method	28
Table D 5	LOS Criteria for Intersections using Average Delay per vehicle (d)1	29

ABBREVIATIONS

AADT Average Annual Daily Traffic

ADT Average Daily Traffic

AVD Average Vehicle Delay

BCL Burwood Council

BCCL Burwood City Council

avg Average

CP Contributions Plan

DA Development Assessment

DCP Development Control Plan

DPE Department of Planning and Environment

DS Degree of Saturation

EPA Act Environmental Planning Assessment Act 1979

EB Eastbound

FSR Floor Space Ratio

GFA Gross Floor Area

GLFA Gross Leasable Floor Area

GSC Greater Sydney Commission

HAF Housing Acceleration Fund

HOB Height of Building

IDP Infrastructure Development Plan

ILP Indicative Layout Plan

km/h Kilometres per hour

kph Kilometres per hour

LGA Local Government Area

LIC Local Infrastructure Contributions

LOS Level of Service

LSPS Local Strategic Planning Statement

LT Left turn

m Metre

NB Northbound

NB: Note well

pa Per annum

PIC Place-based Infrastructure Compact

PTPM Public Transport Projects Model

RDS Road Delay Solutions Pty Ltd - Consultant

Region Plan Greater Sydney Region Plan

RFI Request for Information

RIC Regional Infrastructure Contributions

RMS Roads and Maritime Service

RT Right turn

SB Southbound

SEPP State Environmental Planning Proposal

The Guide Guide to Traffic Generating Developments - TfNSW

TIA Traffic Impact Assessment

TfNSW Transport for New South Wales

Veh Vehicle

vph Vehicles per hour

vpl Vehicle generations per lot per commuter peak hour

WB Westbound

WSA Western Sydney Airport

1 INTRODUCTION

1.1 General

Road Delay Solutions has been engaged by Burwood Tower Holdings Pty Ltd to prepare a commentary on the traffic generation, imposed by the Section 4.55 Application detailing revised land use footprints within the approved Burwood Place Development.

This document is a response to Council's Request for Information (RFI) on the construction staging of 42-60 Railway Parade, Burwood, with respect to the Section 4.55 traffic generations.

The current Burwood Place Development, was approved by Council on 28 November, 2022, with subsequent Section 4.55 modifications, accepted on 12 October 2023 and 5 February 2024.

Figure 1 General Study Area

1.2 Road Hierarchy

The study area is generally bounded by Parramatta Road (GWH) to the north, Shaftesbury Road to the east, Nicholson Parade to the south and Wentworth Road to the west.

The Burwood Town Centre is dominated by a grid like network of varying order roads. The following figure presents the current Road Hierarchy as defined in Burwood City Council's (BCC) Development Control Plan (DCP).

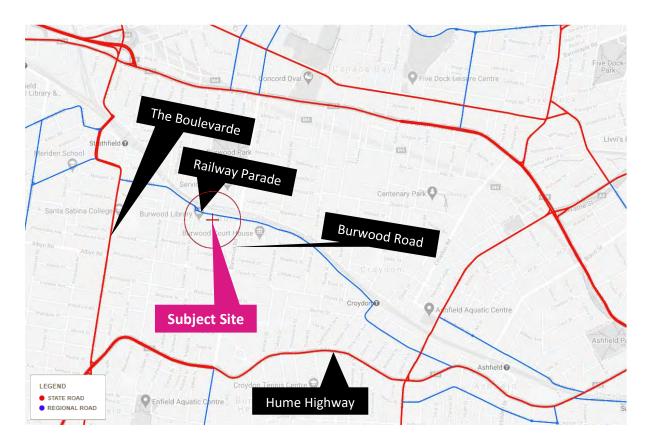


Figure 2 Road Hierarchy

The NSW administrative road hierarchy comprises the following road classifications, which align with the generic road hierarchy as follows;

→ State Roads Freeways and Primary Arterials (RMS/TfNSW Managed),

→ Regional Roads - Secondary or sub arterials (Council Managed, Part funded by the State), and

→ Local Roads Collector and local access roads (Council Managed).

1.3 Burwood Road

Burwood Road is the primary road corridor through the Burwood Town Centre, connecting Parramatta Road in the north to the Hume Highway and Georges River Road in the south. The road generally provides a four (4) lane undivided 40km/h carriageway catering for a single through lane and on-street parking lane in each direction, clear of intersections.

Burwood Road	
Road Classification	Local Road
Alignment	North-South
Number of Lanes	1 lane in each direction
Carriageway Type	Undivided
Carriageway Width	11.8m
Speed Limit	40kph
School Zone	No
Parking Controls	Time restricted parking
Forms Site Frontage	No

1.4 Railway Parade

Railway Parade runs parallel to and south of the railway line, through the town centre. It forms part of a connection between Croydon and Ashfield in the east and Strathfield in the west. Providing a four-lane carriageway, with two traffic lanes in each direction, Railway Parade accommodates bus stops on both sides of the carriageway, including indented bus bays on the northern side in close proximity to Burwood Central.

Railway Parade	
Road Classification	Regional Road
Alignment	East-West
Number of Lanes	2 lanes in each direction
Carriageway Type	Divided
Carriageway Width	12.3m
Speed Limit	40 kph
School Zone	Yes
Parking Controls	2P Ticket
Forms Site Frontage	Yes

1.5 Wynne Avenue

Wynne Avenue connects Railway Parade with Belmore Street in the south. It provides for one traffic lane and one parking lane in each direction, clear of intersections. There are traffic signals at the intersection of Wynne Avenue with Railway Parade, and a roundabout at Wynne Avenue and Belmore Street.

Wynne Avenue	
Road Classification	Local Road
Alignment	North-South
Number of Lanes	2 Northbound, 1 Southbound and 1 Right Turn Lane into Burwood 1 Car Park (Southbound)
Carriageway Type	Undivided
Carriageway Width	11.5m
Speed Limit	40 kph
School Zone	No
Parking Controls	No Stopping
Forms Site Frontage	Yes

1.6 Belmore Street

Belmore Street is to the south of the site. It provides access to commercial, retail and residential operations within the town centre. It caters for one traffic lane and one parking lane in each direction, clear of intersections.

Belmore Street	
Road Classification	Local Road
Alignment	East-West
Number of Lanes	1 lane in each direction
Carriageway Type	Undivided
Carriageway Width	10m
Speed Limit	50 kph
School Zone	No
Parking Controls	2P Ticket
Forms Site Frontage	No

1.7 Clarendon Place

Clarendon Place runs south from Railway Parade, on the eastern side of Burwood Plaza. It provides for two-way traffic and provides access to the rear of properties fronting Burwood Road.

There are marked pedestrian crossings in Clarendon Place at Railway Parade and at the Burwood Plaza pedestrian access.

Clarendon Place	
Road Classification	Local Road
Alignment	North-South
Number of Lanes	1 (tidal)
Carriageway Type	Undivided
Carriageway Width	4.6m
Speed Limit	40kph
School Zone	No
Parking Controls	No Stopping
Forms Site Frontage	Yes

1.8 Conder Street

Conder Street is west of the site, running south from Railway Parade on the western side of the town centre.

The intersection of Conder Street with Railway Parade is controlled by a roundabout. Conder Street provides for one traffic lane and one parking lane in each direction, clear of intersections.

Conder Street	
Road Classification	Local Road
Alignment	North-South
Number of Lanes	1 lane in each direction
Carriageway Type	Undivided
Carriageway Width	9.2m
Speed Limit	50 kph
School Zone	Yes
Parking Controls	2P Ticket
Forms Site Frontage	No

1.9 Hornsey Street

Hornsey Street is a local road providing two-way vehicle access between Conder Street and Wentworth Road. Intermittent and sign posted, one (1) hour timed parking between the hours of 8:00am-6:00pm Monday to Friday and 8:am till 1:00pm Saturdays.

Hornsey Street defines the southern boundary of Burwood Public School with the northern kerb reserved for the school Drop off -Pick up zone (8:00am-9:30am school days) and No Standing at all other times.

Hornsey Street is regulated as 50km/h with a 40km/h school zone, for the duration of the mandatory AM and PM school times, between Conder Street and 10 metres, east of Oxford Street.

Hornsey Street	
Road Classification	Local Road
Alignment	East West
Number of Lanes	1 lane in each direction
Carriageway Type	Undivided
Carriageway Width	7.9m
Speed Limit	50kph
School Zone	Yes
Parking Controls	Time restricted parking / No Stopping
Forms Site Frontage	No

2 CURRENT APPROVALS

2.1 General

The current approval is for a mixed use-development of 42-60 Railway Parade, Burwood, to be known as 'Burwood Place', and comprising of;

- → 1,041 residential apartments,
- → 20,934m² GFA of retail slow rate floor space,
- → 4,500m² GFA of supermarket floor space,
- → 20,363m² GFA of commercial floor space, and
- → 2,322m² GFA of child care centre floor space.

Approved vehicle access is to be provided on;

- Railway Parade priority controlled access west of Wynne Avenue,
- Wynne Avenue traffic signal, controlled, access,
- → Wynne Avenue an exclusive, single lane, exit ramp, immediately north of the Wynne Avenue traffic signals at the access to Burwood Plaza, the Grand, Emerald Square and Council car park, and
- → Belmore Street retention of the current easement for egress.

3 S4.55 LAND USE MODIFICATIONS

The S4.55 modifications encapsulated, with respect to the vehicle generation;

- → 27,153m² GFA of retail,
- → 15,244m² GFA of commercial, and
- → 2,599m² GFA of childcare.

NB The above Retail figure is inclusive of the Supermarket being 3,965m² in GFA, a reduction from the 4,500 m² GFA approved in the DA. The Supermarket has been individually calculated given its differing vehicle generation rate and for direct comparison with the TTIA supporting the approved DA.

4 S4.55 VEHICLE GENERATION

Based upon the *TfNSW'* Guide to traffic Generating Developments, and Technical Direction TDT 2013/04a, hereby referred to as *The Guide*, in accompaniment with the supporting TIA for the approved *Burwood Place* development, presented the following vehicle generations;

- → 9,261 vehicle trips per day,
- → 961 vehicle trips during the AM commuter peak, and
- → 1,128 vehicle trips during the PM commuter peak.

The net reduction of 1,905m² in land use, between the supporting TIA and the S4.55 modifications, are shown in *Table 1*.

COMPONENT	APPROED DA Units	S4.55 MODIFICATION Units	S4.55 VARIATION FROM APPROVED DA Units	S4.55 VARIATION FROM APPROVED DA %
Studio	17	28	11	64.7%
1 Bed Apartment	266	201	-65	-24.4%
2 Bed Apartment	553	582	29	5.2%
3 Bed Apartment	202	230	28	13.9%
4 Bed Apartment	3	0	-3	-100.0%
TOTAL	1,041	1,041	0	
	1,011	1,011		
COMPONENT	APPROVED DA GFA m²	S4.55 MODIFICATION GFA m ²	S4.55 VARIATION	S4.55 VARIATION FROM APPROVED DA %
	APPROVED DA GFA	S4.55 MODIFICATION GFA	S4.55 VARIATION FROM APPROVED DA	FROM APPROVED DA
COMPONENT	APPROVED DA GFA m²	S4.55 MODIFICATION GFA m ²	S4.55 VARIATION FROM APPROVED DA m ²	FROM APPROVED DA %
COMPONENT	APPROVED DA GFA m ² 20,934	S4.55 MODIFICATION GFA m ² 23,188	S4.55 VARIATION FROM APPROVED DA m ² 2,254	FROM APPROVED DA % 10.8%
COMPONENT Retail Supermarket	APPROVED DA GFA m ² 20,934 4,500	S4.55 MODIFICATION GFA m ² 23,188 3,965	S4.55 VARIATION FROM APPROVED DA m ² 2,254 -535	FROM APPROVED DA % 10.8% -11.9%

Table 1 S4.55 Land Use Variation to Approved DA

In accordance with the Guide, the approved DA are compared to the proposed \$4.55 vehicle generation projections, as presented in Table 2.

The \$4.55 modification, in accordance with the Guide, will generate;

- → 9,282 vehicle trips per day,
- → 879 vehicle trips during the AM commuter peak period, and
- → 1,061 vehicle trips during the PM commuter peak period.

PEAK	DA VEHICLE GENERATION vph	S4.55 VEHICLE GENERATION vph	S4.55 VARIATION FROM APPROVED DA vph	S4.55 VARIATION FROM APPROVED DA %
AM Peak	961	896	-65	-6.8%
PM Peak	1,128	1,067	-61	-5.4%

Table 2 S4.55 Vehicle Generation Comparison to Approved DA

5 BURWOOD PLACE CONSTRUCTION STAGING

The Burwood Place development is divided into two (2) staged components. Stage 1 is to the west, on Railway Parade while Stage 2 is to the east, as shown in Figure 3.

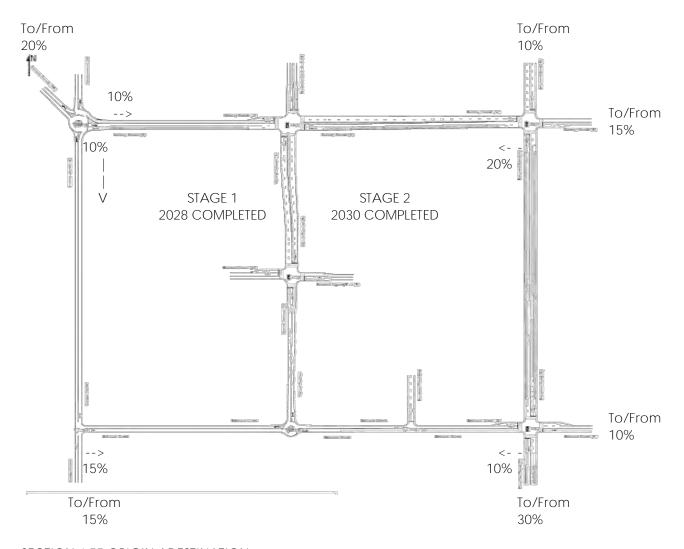
The figure presents the adopted or modelled origin and destination percentages at both the completion of Stage 1 and also, Stage 2, as taken drawn from the original TIA, supporting the approved development.

Until 2028, no traffic generation from Stage 1 of the development has been modelled.

Due to the location of the construction sites, the construction vehicles associated with both Stage 1 and Stage 2 of the project, are recommended to access and or egress both sites outside the commuter peak hours. It is noted that the construction vehicles will be require to travel through school zones. Therefore, construction vehicles(trucks) will not be permitted to travel through the school zones on Railway Parade and Conder Street during school zone hours (8:00am – 9:30am and 2:30pm – 4:00pm). Accordingly, no construction vehicles have been modelled for any scenario, presented in this report.

Following the completion of the western Stage 1 in year 2028, there is anticipated to be no further operation, or vehicle generation, from within the western or Stage 2 precinct of the project. Completion of Stage 2 is anticipated in year 2030.

For the purpose of modelling, the following presents the anticipated timeline for the staged development;


- → 2025 Stage 1 commencement,
- → 2025 16 week temporary closure of Wynne Avenue,
- → 2027 Stage 2 commencement (for the purpose of avoiding problematic overlapping between models, the year 2028 has been chosen for both the completion of Stage 1 and the commencement of Stage 2),
- → 2028 Completion of Stage 2 (the 1 year coincidence between Stages 1 and 2 is considered to be the final touches to fit-out and any utility service rectification, etc... for Stage 1), and
- → 2030 Stage 2 completion / project finalisation.

Both Stages 1 and 2 will have operational retail, commercial and residential components during various stages of development. The vehicle generation, by stage of construction is presented in *Table 3*.

BURWOOD PLACE STAGED SECTION 4.55 VEHICLE GENERATION TABLE									
STAGE	AM Peak Hour Generation (vph)	PM Peak Hour Generation (vph)	AM Outbound Trips (vph)	AM Inbound Trips (vph)	PM Outbound Trips (vph)	PM Inbound Trips (vph)			
STAGE 1	446	593	203	243	385	228			
STAGE 2	433	468	210	223	182	265			
TOTALS	879	1,061	413	466	567	493			

Table 3 Vehicle Generation by Staged Construction

SECTION 4.55 ORIGIN / DESTINATION

Figure 3 Staged Construction Showing Adopted O/D

6 2025 TRAFFIC COUNTS

Traffic counts were collected by MATRIX on Thursday, 8 May 2025, which identified the peak periods as being;

- → 08:00-09:00 for the AM commuter peak period, and
- → !7:30-18:30 for the PM commuter peak period.

The 2025 existing AM and PM models form the baseline upon which the future models have been compared.

The base year 2025 traffic counts can be found in Appendix A.

Interpretation made of the traffic count data collected for the years 2017, 2022 and 2025, have been summed, for the modelled road network, and have revealed negative growth, as indicated below;

- → 2017-2022 -1.34% growth, and
- → 2022-2025 -7.69% growth.

This is in contrast with the volumes collected in year 2017 and again in year 2022, which revealed;

- → 0.36% growth on Wentworth Road, parallel with Conder Street, approaching Railway Parade, and
- → 1.492% growth on Shaftsbury Avenue, parallel with Burwood Road.

In 2025 the Burwood Plaza, retail operations are on-going, and will continue till works commence on Stage 2 of the Burwood Place development in year 2028, when Stage 1 will be completed.

Interpretation of the traffic counts taken in year 2025, indicate that Burwood Plaza currently generates some;

- → 159vph ingress/16vph egress during the AM peak, and
- → 268vph ingress/194vph egress during the PM peak.

Giving due consideration to the aforementioned observations of the collected traffic data over the years, it was considered conservative to allow 0,5% growth on the modelled road network, between each model scenario, to make allowance for the inevitable variations regarding traffic generation from the future Burwood Place development, during each stage of construction.

7 2025 TEMPORARY WYNNE AVENUE CLOSURE

The temporary closure of Wynne Avenue is imminent and will be undertaken in year 2025, but with a redistribution of all traffic Ingressing and egressing the northern leg of Wynne Avenue, south of Railway Parade, as demonstrated in Figure 2.

To permit the road network to function in its current state, motorists at the Burwood Road intersection with Railway Parade, travelling westbound on Railway Parade and turning right from Burwood Road, southbound, and destined to make a left turn from Railway Parade into Wynne Avenue, must be directed to:

- > Proceed to the Conder Street roundabout where they must make a left turn into Conder Street.
- > Proceed south along Conder Street to Belmore Street where they perform a left turn.
- → Travel east along Belmore Steet, and then
- > Turn left into Wynne Avenue.

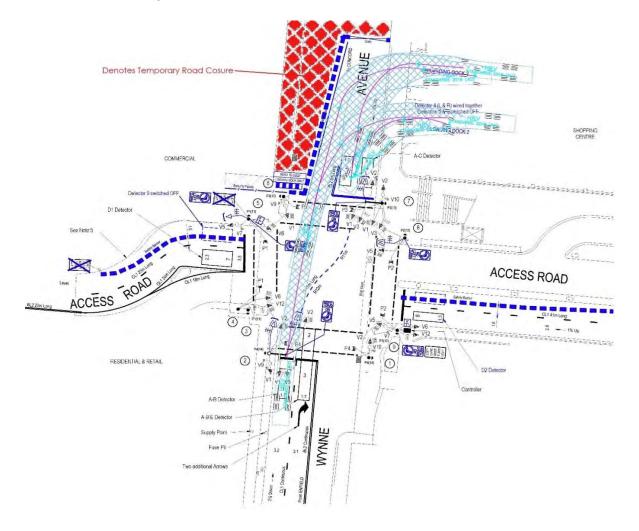


Figure 4 Temporary Closure of Wynne Avenue Source (Extract) B-Line Drafting, 2024

To affect a satisfactory outcome in the network modelling, it is required to adopt modification to the operation of the Burwood Road intersection with Belmore Street, in accordance with the findings, as outlined in *Section 8 Conclusion*, of the initial TIA, submitted and supporting the DA. The modification involves the introduction of;

- → A right turn (RT) signal display for southbound (SB) motorists in Burwood Road,
- → A B Phase RT from Burwood Road, SB into Belmore Street, westbound (WB), and
- → The increase in the traffic signal cycle length from 93 seconds to 120 secs, during both the AM and PM peaks.

With the modification to the traffic signals set in place within the models, the intersection will perform at a satisfactory level of service across both peak periods, as will the surrounding road network, as evidenced by the operational outputs for each of the models.

A comparison has been drawn between the 2025 existing year AM and PM network models and the corresponding year 2025 temporary closure of Wynne Avenue, can be found in the following comparison tables.

For a detailed analysis of the vehicle movements with the temporary closure of Wynne Avenue, see Appendix B.

NETWORK OUTPUT COMPARISON

Comparison of Network Summary Statistics

Network A: [N101(1)] 2025 Existing AM - Scenario: 1 | Local Volumes

Network B: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure - Scenario: 1 | Local Volumes

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	9 Difference Diff Network
Output by Version		10.0.5.217	10.0.5.217		
Cycle Time	sec	85	85	0	0.0
Network Level of Service (LOS)		LOS D	LOS D	NA	N
Speed Efficiency		0.68	0.69	0.01	1.
Travel Time Index		6.43	6.50	0.08	1.3
Congestion Coefficient		1.47	1.46	-0.02	-1.0
Travel Speed (Average)	km/h	29.4	29.8	0.4	1.
Travel Distance (Total)	veh-km/h	2450.3	2538.4	88.0	3.
Travel Time (Total)	veh-h/h	83.4	85.2	1.8	2.
Desired Speed	km/h	Program	Program	NA	N
Demand Flows (Total for all Sites)	veh/h	7200	7637	437	6.
Arrival Flows (Total for all Sites)	veh/h	7200	7637	437	6.
Demand Flows (Entry Total)	veh/h	2640	2878	238	9.
Midblock Inflows (Total)	veh/h	219	461	242	110.
Midblock Outflows (Total)	veh/h	-256	-606	-351	0.
Percent Heavy Vehicles (Demand)	%	5.4	5.0	-0.4	-6.
Percent Heavy Vehicles (Arrival)	%	5.4	5.0	-0.4	-6.
Degree of Saturation		0.605	0.605	0.000	0.
Control Delay (Total)	veh-h/h	25.69	25.64	-0.05	-0.
Control Delay (Average)	sec	12.8	12.1	-0.8	-5.
Control Delay (Worst Lane by MC)	sec	42.5	40.0	-2.5	-5.
Control Delay (Worst Movement by MC)	sec	44.1	44.5	0.4	0.
Geometric Delay (Average)	sec	1.9	2.0	0.1	7.
Stop-Line Delay (Average)	sec	11.0	10.1	-0.9	-8.
Ave. Que Storage Ratio (Worst Lane)		0.61	0.64	0.03	4.
Effective Stops (Total)	veh/h	3882	4133	251	6
Effective Stop Rate		0.54	0.54	0.00	0.
Proportion Queued		0.51	0.51	-0.00	-0.
Performance Index		292.2	290.9	-1.3	-0
Cost (Total)	\$/h	3220.69	3312.78	92.09	2.
Fuel Consumption (Total)	L/h	298.7	309.7	11.1	3.

Fuel Economy	L/100km	12.2	12.2	0.0	0.1
Carbon Dioxide (Total)	kg/h	710.4	736.4	26.0	3.7
Hydrocarbons (Total)	kg/h	0.062	0.064	0.002	3.8
Carbon Monoxide (Total)	kg/h	0.541	0.562	0.021	3.8
NOx (Total)	kg/h	1.506	1.509	0.003	0.2

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Network A - Hours per Year: 480					
Network B - Hours per Year: 480 Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff Network A
Demand Flows (Total for all Sites)	veh/y	3,456,202	3,665,886	209,684	6.1
Delay (Total)	veh-h/y	12,332	12,307	-25	-0.2
Effective Stops (Total)	veh/y	1,863,512	1,984,075	120,563	6.5
Travel Distance (Total)	veh-km/y	1,176,167	1,218,414	42,247	3.6
Travel Time (Total)	veh-h/y	40,010	40,875	865	2.2
Cost (Total)	\$/y	1,545,931	1,590,134	44,204	2.9
Fuel Consumption (Total)	L/y	143,354	148,670	5,316	3.7
Carbon Dioxide (Total)	kg/y	340,985	353,472	12,488	3.7
Hydrocarbons (Total)	kg/y	30	31	1	3.8
Carbon Monoxide (Total)	kg/y	260	270	10	3.8
NOx (Total)	kg/y	723	724	1	0.2

Network Performance (Pedestrians O			44.	2002	
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Travel Speed (Average)	km/h	3.7	3.7	0.0	0.3
Travel Distance (Total)	ped-km/h	535.8	531.1	-4.7	-0.9
Travel Time (Total)	ped-h/h	145.1	143.5	-1.7	-1.1
Demand Flows (Total for all Sites)	ped/h	3342	3105	-237	-7.1
Arrival Flows (Total for all Sites)	ped/h	3342	3105	-237	-7.1
Control Delay (Total)	ped-h/h	30.64	29.98	-0.65	-2.1
Control Delay (Average)	sec	33.0	34.8	1.8	5.3
Control Delay (Worst Movement)	sec	37.6	37.6	0.0	0.0
Effective Stops (Total)	ped/h	2912	2798	-114	-3.9
Effective Stop Rate		0.87	0.90	0.03	3.4
Proportion Queued		0.87	0.90	0.03	3.4
Performance Index		161.3	159.0	-2.3	-1.4
Cost (Total)	\$/h	3989.13	3947.15	-41.98	-1.1

Network Performance (Pedestrians	Only) - Annual Value	es			
Network A - Hours per Year: 480					
Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B -	% Difference

				Network A	Diff / Network A
Demand Flows (Total for all Sites)	ped/y	1604210	1490526	-113684	-7.1
Delay (Total)	ped-h/y	14706	14392	-314	-2.1
Effective Stops (Total)	ped/y	1397995	1343244	-54751	-3.9
Travel Distance (Total)	ped-km/y	257179	254905	-2274	-0.9
Travel Time (Total)	ped-h/y	69659	68859	-800	-1.1
Cost (Total)	\$/y	1914784	1894632	-20152	-1.1

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Travel Speed (Average)	km/h	14.2	14.6	0.4	2.7
Travel Distance (Total)	pers-km/h	3476.2	3577.1	100.9	2.9
Travel Time (Total)	pers-h/h	245.1	245,6	0.5	0.2
Demand Flows (Total for all Sites)	pers/h	11983	12270	287	2.4
Arrival Flows (Total for all Sites)	pers/h	11983	12270	287	2.4
Control Delay (Total)	pers-h/h	61.47	60.75	-0.72	-1.2
Control Delay (Average)	sec	25.6	23.9	-1.7	-6.8
Control Delay (Worst Movement by MC)	sec	44.1	44.5	0.4	0.9
Effective Stops (Total)	pers/h	7571	7759	187	2.5
Effective Stop Rate		0.88	0.85	-0.03	-3.4
Proportion Queued		0.61	0.61	-0.00	-0.4
Performance Index		453.5	449.9	-3.6	-0.8
Cost (Total)	\$/h	7209.82	7259.93	50.11	0.7

Network A - Hours per Year: 480					
Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Demand Flows (Total for all Sites)	pers/y	5751653	5889590	137937	2.4
Delay (Total)	pers-h/y	29505	29161	-344	-1.2
Effective Stops (Total)	pers/y	3634209	3724134	89925	2.5
Travel Distance (Total)	pers-km/y	1668579	1717002	48423	2.9
Travel Time (Total)	pers-h/y	117671	117909	238	0.2
Cost (Total)	\$/y	3460714	3484766	24052	0.7

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Created: Monday, 23 June 2025 9:15:48 PM
Project(s): D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

NETWORK OUTPUT COMPARISON

Comparison of Network Summary Statistics

Network A: [N101(2)] 2025 Existing PM - Scenario: 1 | Local Volumes

Network B: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure - Scenario: 1 | Local Volumes

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff Network A
Output by Version		10.0.5.217	10.0.5.217		
Cycle Time	sec	90	90	0	0.0
Network Level of Service (LOS)		LOS D	LOS D	NA	NA
Speed Efficiency		0.60	0.65	0.05	9.0
Travel Time Index		5.51	6.10	0.59	10.8
Congestion Coefficient		1.68	1.54	-0.14	-8.2
Travel Speed (Average)	km/h	26.3	29.0	2.7	10.2
Travel Distance (Total)	veh-km/h	2873.1	2901.8	28.7	1.0
Travel Time (Total)	veh-h/h	109.3	100.2	-9.1	-8.3
Desired Speed	km/h	Program	Program	NA	NA
Demand Flows (Total for all Sites)	veh/h	8823	9333	510	5.8
Arrival Flows (Total for all Sites)	veh/h	8820	9333	513	5.8
Demand Flows (Entry Total)	veh/h	3016	2970	-46	-1.5
Midblock Inflows (Total)	veh/h	234	367	134	57.2
Midblock Outflows (Total)	veh/h	-383	-522	-139	0.0
Percent Heavy Vehicles (Demand)	%	3.2	3.0	-0.2	-5.8
Percent Heavy Vehicles (Arrival)	%	3.2	3,0	-0.2	-5.8
Degree of Saturation		0.728	0.588	-0.139	-19.2
Control Delay (Total)	veh-h/h	42.58	34.20	-8.38	-19.7
Control Delay (Average)	sec	17.4	13.2	-4.2	-24.
Control Delay (Worst Lane by MC)	sec	54.3	44.4	-9.9	-18.2
Control Delay (Worst Movement by MC)	sec	87.3	44.5	-42.8	-49.0
Geometric Delay (Average)	sec	2.3	2.6	0.2	10.6
Stop-Line Delay (Average)	sec	15.1	10.6	-4.4	-29.4
Ave. Que Storage Ratio (Worst Lane)		0.82	1.15	0.34	41.2
Effective Stops (Total)	veh/h	5257	5150	-106	-2.0
Effective Stop Rate		0.60	0.55	-0.04	-7.4
Proportion Queued		0.57	0.52	-0.04	-7.5
Performance Index		396.3	340.5	-55.9	-14. ⁻
Cost (Total)	\$/h	4075.36	3858.10	-217.26	-5.0
Fuel Consumption (Total)	L/h	361.3	354.9	-6.4	-1.8

Fuel Economy	L/100km	12.6	12.2	-0.3	-2.7
Carbon Dioxide (Total)	kg/h	855.8	840.3	-15.5	-1.8
Hydrocarbons (Total)	kg/h	0.077	0.075	-0.002	-2.7
Carbon Monoxide (Total)	kg/h	0.661	0.654	-0.006	-1.0
NOx (Total)	kg/h	1.349	1.193	-0.156	-11.6

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff Network A
Demand Flows (Total for all Sites)	veh/y	4,234,914	4,479,612	244,698	5.8
Delay (Total)	veh-h/y	20,437	16,417	-4,020	-19.7
Effective Stops (Total)	veh/y	2,523,210	2,472,099	-51,111	-2.0
Travel Distance (Total)	veh-km/y	1,379,091	1,392,877	13,786	1.0
Travel Time (Total)	veh-h/y	52,459	48,099	-4,360	-8.3
Cost (Total)	\$/y	1,956,174	1,851,889	-104,285	-5.3
Fuel Consumption (Total)	L/y	173,406	170,334	-3,073	-1.8
Carbon Dioxide (Total)	kg/y	410,771	403,335	-7,435	-1.8
Hydrocarbons (Total)	kg/y	37	36	-1	-2.7
Carbon Monoxide (Total)	kg/y	317	314	-3	-1.C
NOx (Total)	kg/y	648	573	-75	-11.6

Performance Measure	Units	Network A	Network B	Difference	%
	3/110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Network B - Network A	Difference Diff / Network A
Travel Speed (Average)	km/h	3.7	3.7	0.0	0.1
Travel Distance (Total)	ped-km/h	1011.0	1006.5	-4.5	-0.4
Travel Time (Total)	ped-h/h	275.4	273.9	-1.5	-0.6
Demand Flows (Total for all Sites)	ped/h	5634	5409	-224	-4.0
Arrival Flows (Total for all Sites)	ped/h	5634	5409	-224	-4.0
Control Delay (Total)	ped-h/h	59.40	58.82	-0.58	-1.0
Control Delay (Average)	sec	38.0	39.1	1.2	3.1
Control Delay (Worst Movement)	sec	41.1	41.1	0.0	0.0
Effective Stops (Total)	ped/h	5199	5093	-106	-2.0
Effective Stop Rate		0.92	0.94	0.02	2.0
Proportion Queued		0.92	0.94	0.02	2.0
Performance Index		304.3	302.2	-2.1	-0.7
Cost (Total)	\$/h	7587.05	7548.29	-38.77	-0.5

Network Performance (Pedestrians C	Only) - Annual Value	S			
Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B -	% Difference

				Network A	Diff /
					Network A
Demand Flows (Total for all Sites)	ped/y	2704168	2596547	-107621	-4.0
Delay (Total)	ped-h/y	28511	28232	-279	-1.0
Effective Stops (Total)	ped/y	2495488	2444509	-50979	-2.0
Travel Distance (Total)	ped-km/y	485265	483112	-2152	-0.4
Travel Time (Total)	ped-h/y	132200	131462	-738	-0.6
Cost (Total)	\$/y	3641786	3623177	-18609	-0.5

Performance Measure	Units	Network A	Network B	Difference	%
	Jillis	Network	Network B	Network B - Network A	Difference Diff / Network A
Travel Speed (Average)	km/h	11.0	11.4	0.4	3.8
Travel Distance (Total)	pers-km/h	4458.7	4488.7	30.0	0.7
Travel Time (Total)	pers-h/h	406.6	394.1	-12.4	-3.1
Demand Flows (Total for all Sites)	pers/h	16221	16609	388	2.4
Arrival Flows (Total for all Sites)	pers/h	16217	16609	391	2.4
Control Delay (Total)	pers-h/h	110.49	99.86	-10.63	-9.6
Control Delay (Average)	sec	37.6	32.1	-5.5	-14.6
Control Delay (Worst Movement by MC)	sec	87.3	44.5	-42.8	-49.0
Effective Stops (Total)	pers/h	11507	11273	-234	-2.0
Effective Stop Rate		1.09	1.01	-0.08	-7.4
Proportion Queued		0.69	0.66	-0.03	-4.4
Performance Index		700.6	642.7	-58.0	-8.3
Cost (Total)	\$/h	11662.42	11406.39	-256.03	-2.2

Network Performance (Persons Only	- Annual Values				
Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Demand Flows (Total for all Sites)	pers/y	7786066	7972084	186018	2.4
Delay (Total)	pers-h/y	53036	47933	-5103	-9.6
Effective Stops (Total)	pers/y	5523341	5411028	-112312	-2.0
Travel Distance (Total)	pers-km/y	2140174	2154564	14390	0.7
Travel Time (Total)	pers-h/y	195151	189181	-5971	-3.1
Cost (Total)	\$/y	5597960	5475066	-122894	-2.2

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Created: Monday, 23 June 2025 9:17:29 PM
Project(s): D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

8 2028 STAGE 1 COMPLETED

With completion of Stage 1, the primary access to and from the stage is from Railway Parade, to the west of Wynne Avenue. The access is intended primarily for the retail component of Stage 1 with provision for a loading dock. However, given it will be the sole point of entry, till Stage 2 is completed, it must provide residential and commercial access also, until such time as Stage 2 is completed and the full quantum of parking provisions can be provided.

To affect a satisfactory outcome in the network modelling, it is required to adopt modification to the operation of the Burwood Road intersection with Belmore Street, in accordance with the findings, as outlined in *Section 8 Conclusion*, of the initial TIA, submitted and supporting the DA. The modification involves the introduction of:

- → A right turn (RT) signal display for southbound (SB) motorists in Burwood Road,
- → A B Phase RT from Burwood Road, SB into Belmore Street, westbound (WB),
- → The increase of the traffic signal cycle length from 85 seconds to 120 secs, during both the AM and PM peaks, and
- → Due consideration given to the presence and level of on-street parking, southbound, between Railway Parade and Belmore Street.

Figure 5 presents the modelled road network, inclusive of;

- → The current state of on-street parking southbound, along Burwood Road between Railway Parade and Belmore Street, and
- → The sole access to Stage 1, to and from Railway Parade.

With the afore-noted embellishments, recommended at the Burwood Road intersection with Belmore Street, the network will operate at a satisfactory LOS D across both commuter peaks, as demonstrated in the following comparison tables.

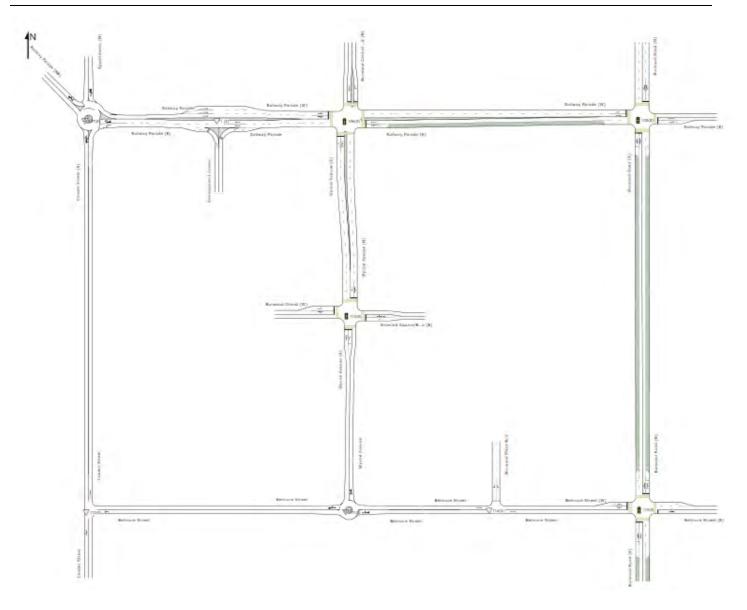


Figure 5 2028 Stage 1 Road Network Source SIDRA Network V10, 2025

NETWORK OUTPUT COMPARISON

Comparison of Network Summary Statistics

Network A: [N101(1)] 2025 Existing AM - Scenario: 1 | Local Volumes

□ Network B: [N101(7)] 2028 AM Stage 1 Complete - Scenario: 1 | Local Volumes

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	Difference Diff Network A
Output by Version		10.0.5.217	10.0.5.217		
Outle Time		85	140	55	64.7
Cycle Time	sec	00	140	55	04.7
Network Level of Service (LOS)		LOS D	LOS D	NA	N.A
Speed Efficiency		0.68	0.59	-0.09	-12.7
Travel Time Index		6.43	5.47	-0.96	-14.9
Congestion Coefficient		1.47	1.69	0.21	14.5
Travel Speed (Average)	km/h	29.4	26.5	-2.9	-9.8
Travel Distance (Total)	veh-km/h	2450.3	3091.5	641.2	26.2
Travel Time (Total)	veh-h/h	83.4	116.6	33.2	39.9
Desired Speed	km/h	Program	Program	NA	NA NA
Demand Flows (Total for all Sites)	veh/h	7200	9610	2409	33.5
Arrival Flows (Total for all Sites)	veh/h	7200	9610	2409	33.5
Demand Flows (Entry Total)	veh/h	2640	3085	445	16.8
Midblock Inflows (Total)	veh/h	219	897	678	309.5
Midblock Outflows (Total)	veh/h	-256	-843	-587	0.0
Percent Heavy Vehicles (Demand)	%	5.4	4.2	-1.2	-21.4
Percent Heavy Vehicles (Arrival)	%	5.4	4.2	-1.2	-21.4
Degree of Saturation		0.605	0.745	0.140	23.1
Control Delay (Total)	veh-h/h	25.69	44.93	19.24	74.9
Control Delay (Average)	sec	12.8	16.8	4.0	31.0
Control Delay (Worst Lane by MC)	sec	42.5	71.9	29.5	69.4
Control Delay (Worst Movement by MC)	sec	44.1	74.6	30.5	69.2
Geometric Delay (Average)	sec	1.9	2.1	0.2	8.6
Stop-Line Delay (Average)	sec	11.0	14.8	3.8	34.9
Ave. Que Storage Ratio (Worst Lane)		0.61	0.95	0.34	56.2
Effective Stops (Total)	veh/h	3882	5014	1132	29.2
Effective Stop Rate	20000	0.54	0.52	-0.02	-3.2
Proportion Queued		0.51	0.45	-0.06	-12.6
Performance Index		292.2	449.1	156.9	53.7
Cost (Total)	\$/h	3220.69	4389.49	1168.80	36.3
Fuel Consumption (Total)	L/h	298.7	382.6	84.0	28.

Fuel Economy	L/100km	12.2	12.4	0.2	1.5
Carbon Dioxide (Total)	kg/h	710.4	908.0	197.6	27.8
Hydrocarbons (Total)	kg/h	0.062	0.081	0.019	30.4
Carbon Monoxide (Total)	kg/h	0.541	0.717	0.176	32.5
NOx (Total)	kg/h	1.506	1.627	0.121	8.0

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Network A - Hours per Year: 480					
Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Demand Flows (Total for all Sites)	veh/y	3,456,202	4,612,598	1,156,396	33.5
Delay (Total)	veh-h/y	12,332	21,567	9,235	74.9
Effective Stops (Total)	veh/y	1,863,512	2,406,916	543,404	29.2
Travel Distance (Total)	veh-km/y	1,176,167	1,483,943	307,776	26.2
Travel Time (Total)	veh-h/y	40,010	55,963	15,953	39.9
Cost (Total)	\$/y	1,545,931	2,106,955	561,024	36.3
Fuel Consumption (Total)	L/y	143,354	183,661	40,307	28.1
Carbon Dioxide (Total)	kg/y	340,985	435,855	94,870	27.8
Hydrocarbons (Total)	kg/y	30	39	9	30.4
Carbon Monoxide (Total)	kg/y	260	344	84	32.5
NOx (Total)	kg/y	723	781	58	8.0

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Travel Speed (Average)	km/h	3.7	3.2	-0.5	-12.9
Travel Distance (Total)	ped-km/h	535.8	535.8	0.0	0.0
Travel Time (Total)	ped-h/h	145.1	166.6	21.4	14.8
Demand Flows (Total for all Sites)	ped/h	3342	3342	Ó	0.0
Arrival Flows (Total for all Sites)	ped/h	3342	3342	0	0.0
Control Delay (Total)	ped-h/h	30.64	52.07	21.43	70.0
Control Delay (Average)	sec	33.0	56.1	23.1	70.0
Control Delay (Worst Movement)	sec	37.6	65.7	28.1	74.7
Effective Stops (Total)	ped/h	2912	2906	-7	-0.2
Effective Stop Rate		0.87	0.87	-0.00	-0.2
Proportion Queued		0.87	0.87	-0.00	-0.2
Performance Index		161.3	182.7	21.4	13.3
Cost (Total)	\$/h	3989.13	4577.63	588.50	14.8

Network Performance (Pedestrians C	Only) - Annual Value	es			
Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B -	% Difference

				Network A	Diff /
					Network A
Demand Flows (Total for all Sites)	ped/y	1604210	1604210	0	0.0
Delay (Total)	ped-h/y	14706	24994	10287	70.0
Effective Stops (Total)	ped/y	1397995	1394850	-3145	-0.2
Travel Distance (Total)	ped-km/y	257179	257179	0	0.0
Travel Time (Total)	ped-h/y	69659	79947	10287	14.8
Cost (Total)	\$/y	1914784	2197264	282481	14.8

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Travel Speed (Average)	km/h	14.2	13.9	-0.3	-2.3
Travel Distance (Total)	pers-km/h	3476.2	4245.6	769.4	22.1
Travel Time (Total)	pers-h/h	245.1	306.5	61.3	25.0
Demand Flows (Total for all Sites)	pers/h	11983	14874	2891	24.1
Arrival Flows (Total for all Sites)	pers/h	11983	14874	2891	24.1
Control Delay (Total)	pers-h/h	61.47	105.99	44.52	72.4
Control Delay (Average)	sec	25.6	33.1	7.5	29.2
Control Delay (Worst Movement by MC)	sec	44.1	74.6	30.5	69.2
Effective Stops (Total)	pers/h	7571	8923	1352	17.9
Effective Stop Rate		0.88	0.77	-0.10	-11.7
Proportion Queued		0.61	0.54	-0.07	-11.4
Performance Index		453.5	631.8	178.3	39.3
Cost (Total)	\$/h	7209.82	8967.12	1757.30	24.4

Network Performance (Persons Only	Network Performance (Persons Only) - Annual Values						
Network A - Hours per Year: 480 Network B - Hours per Year: 480							
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A		
Demand Flows (Total for all Sites)	pers/y	5751653	7139328	1387676	24.1		
Delay (Total)	pers-h/y	29505	50874	21369	72.4		
Effective Stops (Total)	pers/y	3634209	4283149	648940	17.9		
Travel Distance (Total)	pers-km/y	1668579	2037911	369332	22.1		
Travel Time (Total)	pers-h/y	117671	147102	29431	25.0		
Cost (Total)	\$/y	3460714	4304220	843505	24.4		

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 19 June 2025 4;38:19 AM
Project(s): D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

NETWORK OUTPUT COMPARISON

Comparison of Network Summary Statistics

Network A: [N101(2)] 2025 Existing PM - Scenario: 1 | Local Volumes

Network B: [N101(8)] 2028 PM Stage 1 Complete - Scenario: 1 | Local Volumes

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	9 Difference Diff Network A
Output by Version		10.0.5.217	10.0.5.217		
Cycle Time	sec	90	90	0	0.0
Network Level of Service (LOS)		LOS D	LOS D	NA	NA
Speed Efficiency		0.60	0.59	-0.02	-2.
Travel Time Index		5.57	5.40	-0.17	-3.
Congestion Coefficient		1.66	1.71	0.04	2.
Travel Speed (Average)	km/h	26.6	26.8	0.2	0.8
Travel Distance (Total)	veh-km/h	2766.2	3285.3	519.1	18.
Travel Time (Total)	veh-h/h	103.9	122.4	18.5	17.
Desired Speed	km/h	Program	Program	NA	N
Demand Flows (Total for all Sites)	veh/h	8612	10679	2067	24.
Arrival Flows (Total for all Sites)	veh/h	8612	10679	2067	24.
Demand Flows (Entry Total)	veh/h	2806	3281	475	16.
Midblock Inflows (Total)	veh/h	235	1418	1183	503.
Midblock Outflows (Total)	veh/h	-174	-1373	-1200	0.
Percent Heavy Vehicles (Demand)	%	3.3	2.8	-0.5	-14.
Percent Heavy Vehicles (Arrival)	%	3.3	2.8	-0.5	-14.
Degree of Saturation		0.655	0.904	0.249	38.
Control Delay (Total)	veh-h/h	39.80	46.27	6.47	16.
Control Delay (Average)	sec	16.6	15.6	-1.0	-6.
Control Delay (Worst Lane by MC)	sec	49.4	65.6	16.3	33.
Control Delay (Worst Movement by MC)	sec	78.7	74.8	-3.8	-4,
Geometric Delay (Average)	sec	2.4	2.4	0.1	3.
Stop-Line Delay (Average)	sec	14.3	13.2	-1.1	-7.
Ave. Que Storage Ratio (Worst Lane)		0.84	0.65	-0.19	-22.
Effective Stops (Total)	veh/h	5029	6082	1054	21.
Effective Stop Rate		0.58	0.57	-0.01	-2.
Proportion Queued		0.56	0.50	-0.06	-9.
Performance Index		372.3	403.1	30.8	8.
Cost (Total)	\$/h	3903.42	4707.30	803.88	20.
Fuel Consumption (Total)	L/h	352.5	418.8	66.3	18.

Fuel Economy	L/100km	12.7	12.7	0.0	0.0
Carbon Dioxide (Total)	kg/h	835.1	991.4	156.3	18.7
Hydrocarbons (Total)	kg/h	0.075	0.089	0.014	19.1
Carbon Monoxide (Total)	kg/h	0.648	0.800	0.152	23.4
NOx (Total)	kg/h	1.341	1.480	0.139	10.4

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Network A - Hours per Year: 480					
Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff Network A
Demand Flows (Total for all Sites)	veh/y	4,133,861	5,125,996	992,135	24.0
Delay (Total)	veh-h/y	19,105	22,211	3,106	16.3
Effective Stops (Total)	veh/y	2,413,749	2,919,479	505,730	21.0
Travel Distance (Total)	veh-km/y	1,327,766	1,576,940	249,174	18.8
Travel Time (Total)	veh-h/y	49,863	58,745	8,882	17.8
Cost (Total)	\$/y	1,873,641	2,259,506	385,865	20.6
Fuel Consumption (Total)	L/y	169,177	201,002	31,825	18.8
Carbon Dioxide (Total)	kg/y	400,830	475,854	75,024	18.7
Hydrocarbons (Total)	kg/y	36	43	7	19.1
Carbon Monoxide (Total)	kg/y	311	384	73	23.4
NOx (Total)	kg/y	644	710	67	10.4

Performance Measure	Units	Network A	Network B	Difference	%
r en omance measure	Villa	Hetwork	Network B	Network B - Network A	Difference Diff / Network A
Travel Speed (Average)	km/h	3.7	3.7	0.0	0.0
Travel Distance (Total)	ped-km/h	1011.0	1011.0	0.0	0.0
Travel Time (Total)	ped-h/h	275.4	275.4	-0.0	-0.0
Demand Flows (Total for all Sites)	ped/h	5634	5634	0	0.0
Arrival Flows (Total for all Sites)	ped/h	5634	5634	0	0.0
Control Delay (Total)	ped-h/h	59.40	59.39	-0.00	-0.0
Control Delay (Average)	sec	38.0	38.0	-0.0	-0.0
Control Delay (Worst Movement)	sec	41.1	41.1	0.0	0.0
Effective Stops (Total)	ped/h	5198	5195	-4	-0.1
Effective Stop Rate		0.92	0.92	-0.00	-0.1
Proportion Queued		0.92	0.92	-0.00	-0.1
Performance Index		304.3	304.3	-0.0	-0.0
Cost (Total)	\$/h	7587.04	7586.93	-0.11	-0.0

Network Performance (Pedestrians C	Only) - Annual Value	es			
Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B -	% Difference

				Network A	Diff /
					Network A
Demand Flows (Total for all Sites)	ped/y	2704168	2704168	0	0.0
Delay (Total)	ped-h/y	28511	28509	-2	-0.0
Effective Stops (Total)	ped/y	2495226	2493492	-1734	-0.1
Travel Distance (Total)	ped-km/y	485265	485265	0	0.0
Travel Time (Total)	ped-h/y	132200	132198	-2	-0.0
Cost (Total)	\$/y	3641778	3641724	-54	-0.0

Performance Measure	Units	Network A	Network B	Difference	%
Performance measure	Othis	Network	Network B	Network B - Network A	70 Difference Diff / Network A
Travel Speed (Average)	km/h	10.8	11.7	0.9	8.4
Travel Distance (Total)	pers-km/h	4330.4	4953.3	622.9	14.4
Travel Time (Total)	pers-h/h	400.1	422.3	22.2	5,5
Demand Flows (Total for all Sites)	pers/h	15968	18449	2480	15.5
Arrival Flows (Total for all Sites)	pers/h	15968	18449	2480	15.5
Control Delay (Total)	pers-h/h	107.16	114.92	7.76	7.2
Control Delay (Average)	sec	37.3	32.3	-5.0	-13.5
Control Delay (Worst Movement by MC)	sec	78.7	74.8	-3.8	-4.9
Effective Stops (Total)	pers/h	11233	12493	1261	11.2
Effective Stop Rate		1.09	0.97	-0.11	-10.3
Proportion Queued		0.69	0.63	-0.06	-8.1
Performance Index		676.6	707.4	30.8	4.5
Cost (Total)	\$/h	11490.46	12294.23	803.77	7.0

Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Demand Flows (Total for all Sites)	pers/y	7664802	8855364	1190562	15.5
Delay (Total)	pers-h/y	51437	55162	3725	7.2
Effective Stops (Total)	pers/y	5391724	5996866	605142	11.2
Travel Distance (Total)	pers-km/y	2078584	2377593	299009	14.4
Travel Time (Total)	pers-h/y	192035	202692	10657	5.5
Cost (Total)	\$/y	5515420	5901230	385810	7.0

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 19 June 2025 4:38:35 AM
Project(s): D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

9 2030 STAGE 2 COMPLETED

The predominant change to the road network involves the reduction of Wynne Avenue to one trafficable lane in each direction. While creating a pinch point, the models suggest no degradation of the road network operation. Through motorists on Wynne Avenue retain the same single lane capacity, in both directions, between Railway Parade and Belmore Street.

With access now provided from Railway Parade, Wynne Avenue and egress only onto Belmore Street, the models do not highlight any significant failing on the road network.

The modelling suggests that the road network, with the pinch point in Wynne Avenue and the further recommended modifications to the Burwood Road and Belmore Street intersection, will return a satisfactory LOS D across both the AM and PM commuter peak periods.

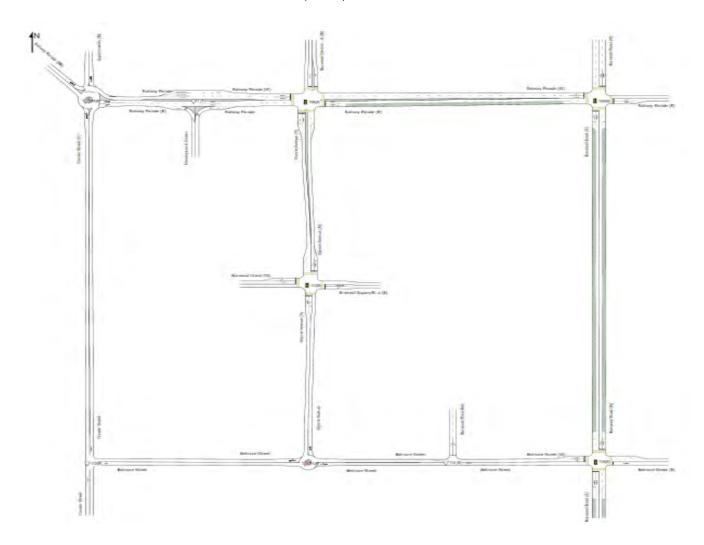


Figure 6 2030 Stage 2 Road Network Source SIDRA Network V10, 2025

NETWORK OUTPUT COMPARISON

Comparison of Network Summary Statistics

Network A: [N101(1)] 2025 Existing AM - Scenario: 1 | Local Volumes

Network B: [N101(9)] 2030 AM Stage 2 Complete - Scenario: 1 | Local Volumes

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff Network A
Output by Version		10.0.5.217	10.0.5.217		
Cycle Time	sec	85	85	0	0.0
Network Level of Service (LOS)		LOS D	LOS D	NA	NA
Speed Efficiency		0.68	0.53	-0.14	-21.2
Travel Time Index		6.43	4.83	-1.60	-24.9
Congestion Coefficient		1,47	1.87	0.40	26.9
Travel Speed (Average)	km/h	29.4	24.0	-5.4	-18.5
Travel Distance (Total)	veh-km/h	2450.3	3151.1	700.8	28.6
Travel Time (Total)	veh-h/h	83.4	131.5	48.2	57.8
Desired Speed	km/h	Program	Program	NA	NA
Demand Flows (Total for all Sites)	veh/h	7200	9975	2774	38.5
Arrival Flows (Total for all Sites)	veh/h	7200	9975	2774	38.
Demand Flows (Entry Total)	veh/h	2640	3254	614	23.
Midblock Inflows (Total)	veh/h	219	1286	1067	487.
Midblock Outflows (Total)	veh/h	-256	-1412	-1157	0.0
Percent Heavy Vehicles (Demand)	%	5.4	4.1	-1.3	-24.
Percent Heavy Vehicles (Arrival)	%	5.4	4.1	-1.3	-24.
Degree of Saturation		0.605	1.044	0.439	72.
Control Delay (Total)	veh-h/h	25.69	57.09	31.40	122.2
Control Delay (Average)	sec	12.8	20.6	7.8	60.4
Control Delay (Worst Lane by MC)	sec	42.5	122.4	79.9	188.
Control Delay (Worst Movement by MC)	sec	44.1	128.6	84.5	191.7
Geometric Delay (Average)	sec	1.9	2.2	0.3	15.9
Stop-Line Delay (Average)	sec	11.0	18.4	7.5	68.
Ave. Que Storage Ratio (Worst Lane)		0.61	1.06	0.45	73.2
Effective Stops (Total)	veh/h	3882	6429	2546	65.
Effective Stop Rate		0.54	0.64	0.11	19.
Proportion Queued		0.51	0.54	0.03	6.8
Performance Index		292.2	488.8	196.7	67.3
Cost (Total)	\$/h	3220.69	4993.85	1773.16	55.
Fuel Consumption (Total)	L/h	298.7	436.0	137.4	46.

Fuel Economy	L/100km	12.2	13.8	1.6	13.5
Carbon Dioxide (Total)	kg/h	710.4	1034.4	324.0	45.6
Hydrocarbons (Total)	kg/h	0.062	0.096	0.034	54.2
Carbon Monoxide (Total)	kg/h	0.541	0.836	0.294	54.4
NOx (Total)	kg/h	1.506	1.939	0.433	28.8

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Network A - Hours per Year: 480					
Network B - Hours per Year: 480 Performance Measure	Units	Network A	Network B	Difference	%
remonnance measure	Units	Network	Network	Network B -	Difference
				Network A	Diff
					Network A
Demand Flows (Total for all Sites)	veh/y	3,456,202	4,787,924	1,331,722	38.5
Delay (Total)	veh-h/y	12,332	27,404	15,072	122.2
Effective Stops (Total)	veh/y	1,863,512	3,085,762	1,222,251	65.6
Travel Distance (Total)	veh-km/y	1,176,167	1,512,552	336,385	28.6
Travel Time (Total)	veh-h/y	40,010	63,122	23,112	57.8
Cost (Total)	\$/y	1,545,931	2,397,047	851,116	55.1
Fuel Consumption (Total)	L/y	143,354	209,295	65,942	46.0
Carbon Dioxide (Total)	kg/y	340,985	496,527	155,542	45.6
Hydrocarbons (Total)	kg/y	30	46	16	54.2
Carbon Monoxide (Total)	kg/y	260	401	141	54.4
NOx (Total)	kg/y	723	931	208	28.8

Performance Measure	Units	Network A	Network B	Difference	% Difference Diff / Network A
	Ginta.	HSWOIRA	Metwork D	Network B - Network A	
Travel Speed (Average)	km/h	3.7	3.7	0.0	0.0
Travel Distance (Total)	ped-km/h	535.8	535.8	0.0	0.0
Travel Time (Total)	ped-h/h	145.1	145.1	0.0	0.0
Demand Flows (Total for all Sites)	ped/h	3342	3342	0	0.0
Arrival Flows (Total for all Sites)	ped/h	3342	3342	0	0.0
Control Delay (Total)	ped-h/h	30.64	30.64	0.00	0.0
Control Delay (Average)	sec	33.0	33.0	0.0	0.0
Control Delay (Worst Movement)	sec	37.6	37.6	0.0	0.0
Effective Stops (Total)	ped/h	2912	2912	0	0.0
Effective Stop Rate		0.87	0.87	0.00	0.0
Proportion Queued		0.87	0.87	0.00	0.0
Performance Index		161.3	161.3	0.0	0.0
Cost (Total)	\$/h	3989.13	3989.13	0.00	0.0

Network Performance (Pedestrians 0	Only) - Annual Value	es			
Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B -	% Difference

				Network A	Diff /
					Network A
Demand Flows (Total for all Sites)	ped/y	1604210	1604210	0	0.0
Delay (Total)	ped-h/y	14706	14706	0	0.0
Effective Stops (Total)	ped/y	1397995	1397995	0	0.0
Travel Distance (Total)	ped-km/y	257179	257179	0	0.0
Travel Time (Total)	ped-h/y	69659	69659	0	0.0
Cost (Total)	\$/y	1914784	1914784	0	0.0

Performance Measure	Units Network A	Network A	Network B	Difference Network B -	% Difference
				Network A	Diff / Network A
Travel Speed (Average)	km/h	14.2	14.3	0.1	0.5
Travel Distance (Total)	pers-km/h	3476.2	4317.2	841.0	24.2
Travel Time (Total)	pers-h/h	245.1	302.9	57.8	23.6
Demand Flows (Total for all Sites)	pers/h	11983	15312	3329	27.8
Arrival Flows (Total for all Sites)	pers/h	11983	15312	3329	27.8
Control Delay (Total)	pers-h/h	61.47	99.15	37.68	61.3
Control Delay (Average)	sec	25.6	29.8	4.2	16.4
Control Delay (Worst Movement by MC)	sec	44.1	128.6	84.5	191.7
Effective Stops (Total)	pers/h	7571	10627	3056	40.4
Effective Stop Rate		0.88	0.89	0.01	1.3
Proportion Queued		0.61	0.61	0.00	0.6
Performance Index		453.5	650.1	196.7	43.4
Cost (Total)	\$/h	7209.82	8982.98	1773.16	24.6

Network Performance (Persons Only) - Annual Values							
20.30	- Ann A. C.	- V. D E. D D.					
Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A			
pers/y	5751653	7349720	1598067	27.8			
pers-h/y	29505	47591	18087	61.3			
pers/y	3634209	5100910	1466702	40.4			
pers-km/y	1668579	2072241	403662	24.2			
pers-h/y	117671	145406	27734	23.6			
\$/y	3460714	4311830	851116	24.6			
	pers/y pers-h/y pers-km/y pers-h/y	Ders/y 5751653 pers-h/y 29505 pers/y 3634209 pers-km/y 1668579 pers-h/y 117671	Units Network A Network B pers/y 5751653 7349720 pers-h/y 29505 47591 pers/y 3634209 5100910 pers-km/y 1668579 2072241 pers-h/y 117671 145406	Units Network A Network B Difference Network B - Network A pers/y 5751653 7349720 1598067 pers-h/y 29505 47591 18087 pers/y 3634209 5100910 1466702 pers-km/y 1668579 2072241 403662 pers-h/y 117671 145406 27734			

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 19 June 2025 4;39:42 AM
Project(s): D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

NETWORK OUTPUT COMPARISON

Comparison of Network Summary Statistics

Network A: [N101(2)] 2025 Existing PM - Scenario: 1 | Local Volumes

Network B: [N101(10)] 2030 PM Stage 2 Complete - Scenario: 1 | Local Volumes

Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff Network A
Output by Version		10.0.5.217	10.0.5.217		
Cycle Time	sec	90	90	0	0.0
Network Level of Service (LOS)		LOS D	LOS D	NA	N/
Speed Efficiency		0.60	0.61	0.01	0.9
Travel Time Index		5.57	5.63	0.06	1.
Congestion Coefficient		1.66	1.65	-0.01	-0.9
Travel Speed (Average)	km/h	26.6	27.8	1.2	4.6
Travel Distance (Total)	veh-km/h	2766.2	3248.1	481.9	17.
Travel Time (Total)	veh-h/h	103.9	116.7	12.8	12.
Desired Speed	km/h	Program	Program	NA	N
Demand Flows (Total for all Sites)	veh/h	8612	10574	1962	22.
Arrival Flows (Total for all Sites)	veh/h	8612	10574	1962	22.
Demand Flows (Entry Total)	veh/h	2806	3175	370	13.
Midblock Inflows (Total)	veh/h	235	1523	1288	548.
Midblock Outflows (Total)	veh/h	-174	-1373	-1200	0.
Percent Heavy Vehicles (Demand)	%	3.3	2.9	-0.4	-13.
Percent Heavy Vehicles (Arrival)	%	3.3	2.9	-0.4	-13.
Degree of Saturation		0.655	0.800	0.146	22.
Control Delay (Total)	veh-h/h	39.80	41.33	1.53	3.
Control Delay (Average)	sec	16.6	14.1	-2.6	-15.
Control Delay (Worst Lane by MC)	sec	49.4	52.2	2.9	5.
Control Delay (Worst Movement by MC)	sec	78.7	60.2	-18.4	-23.
Geometric Delay (Average)	sec	2.4	2.5	0.1	4.
Stop-Line Delay (Average)	sec	14.3	11.6	-2.7	-18.
Ave. Que Storage Ratio (Worst Lane)		0.84	0.66	-0.18	-21.
Effective Stops (Total)	veh/h	5029	5821	793	15.
Effective Stop Rate		0.58	0.55	-0.03	-5.
Proportion Queued		0.56	0.49	-0.07	-11.
Performance Index		372.3	374.8	2.5	0.
Cost (Total)	\$/h	3903.42	4541.95	638.53	16.
Fuel Consumption (Total)	L/h	352.5	410.9	58.4	16.

Fuel Economy	L/100km	12.7	12.7	-0.1	-0.7
Carbon Dioxide (Total)	kg/h	835.1	972.9	137.8	16.5
Hydrocarbons (Total)	kg/h	0.075	0.087	0.012	15.9
Carbon Monoxide (Total)	kg/h	0.648	0.786	0.137	21.2
NOx (Total)	kg/h	1.341	1.472	0.131	9.8

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Network A - Hours per Year: 480					
Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff Network A
Demand Flows (Total for all Sites)	veh/y	4,133,861	5,075,470	941,609	22.8
Delay (Total)	veh-h/y	19,105	19,839	734	3.8
Effective Stops (Total)	veh/y	2,413,749	2,794,176	380,426	15.8
Travel Distance (Total)	veh-km/y	1,327,766	1,559,081	231,315	17.4
Travel Time (Total)	veh-h/y	49,863	55,996	6,133	12.3
Cost (Total)	\$/y	1,873,641	2,180,136	306,494	16.4
Fuel Consumption (Total)	L/y	169,177	197,227	28,049	16.6
Carbon Dioxide (Total)	kg/y	400,830	466,981	66,151	16.5
Hydrocarbons (Total)	kg/y	36	42	6	15.9
Carbon Monoxide (Total)	kg/y	311	377	66	21.2
NOx (Total)	kg/y	644	707	63	9.8

Network Performance (Pedestrians O	nly) - Hourly Values				
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Travel Speed (Average)	km/h	3.7	3.7	0.0	0.0
Travel Distance (Total)	ped-km/h	1011.0	1011.0	0.0	0.0
Travel Time (Total)	ped-h/h	275.4	275.4	-0.0	-0.0
Demand Flows (Total for all Sites)	ped/h	5634	5634	0	0.0
Arrival Flows (Total for all Sites)	ped/h	5634	5634	0	0.0
Control Delay (Total)	ped-h/h	59.40	59.39	-0.00	-0.0
Control Delay (Average)	sec	38.0	38.0	-0.0	-0.0
Control Delay (Worst Movement)	sec	41.1	41.1	0.0	0.0
Effective Stops (Total)	ped/h	5198	5195	-4	-0.1
Effective Stop Rate		0.92	0.92	-0.00	-0.1
Proportion Queued		0.92	0.92	-0.00	-0.1
Performance Index		304.3	304.3	-0.0	-0.0
Cost (Total)	\$/h	7587.04	7586.93	-0.11	-0.0

Network Performance (Pedestrians C	Only) - Annual Value	es .			
Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B -	% Difference

				Network A	Diff /
					Network A
Demand Flows (Total for all Sites)	ped/y	2704168	2704168	0	0.0
Delay (Total)	ped-h/y	28511	28509	-2	-0.0
Effective Stops (Total)	ped/y	2495226	2493492	-1734	-0.1
Travel Distance (Total)	ped-km/y	485265	485265	0	0.0
Travel Time (Total)	ped-h/y	132200	132198	-2	-0.0
Cost (Total)	\$/y	3641778	3641724	-54	-0.0

Performance Measure	Units	Network A	Network B	Difference	%
renomance measure	Othis	Network	Network	Network B - Network A	Difference Diff / Network A
Travel Speed (Average)	km/h	10.8	11.8	1.0	9.2
Travel Distance (Total)	pers-km/h	4330.4	4908.7	578.3	13.4
Travel Time (Total)	pers-h/h	400.1	415.4	15.3	3.8
Demand Flows (Total for all Sites)	pers/h	15968	18322	2354	14.7
Arrival Flows (Total for all Sites)	pers/h	15968	18322	2354	14.7
Control Delay (Total)	pers-h/h	107.16	108.99	1.83	1.7
Control Delay (Average)	sec	37.3	30.9	-6.4	-17.2
Control Delay (Worst Movement by MC)	sec	78.7	60.2	-18.4	-23.4
Effective Stops (Total)	pers/h	11233	12180	947	8.4
Effective Stop Rate		1.09	0.96	-0.13	-11.7
Proportion Queued		0.69	0.63	-0.06	-9.0
Performance Index		676.6	679.1	2.4	0.4
Cost (Total)	\$/h	11490.46	12128.88	638.42	5.6

Network A - Hours per Year: 480 Network B - Hours per Year: 480					
Performance Measure	Units	Network A	Network B	Difference Network B - Network A	% Difference Diff / Network A
Demand Flows (Total for all Sites)	pers/y	7664802	8794732	1129930	14.7
Delay (Total)	pers-h/y	51437	52315	879	1.7
Effective Stops (Total)	pers/y	5391724	5846503	454778	8.4
Travel Distance (Total)	pers-km/y	2078584	2356162	277578	13.4
Travel Time (Total)	pers-h/y	192035	199393	7358	3.8
Cost (Total)	\$/y	5515420	5821860	306440	5.6

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 19 June 2025 4:39:52 AM
Project(s): D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

10 CONCLUSION

Road Delay Solutions has been engaged by Burwood Tower Holdings Pty Ltd to prepare a commentary on the traffic generation, imposed by the Section 4.55 Application detailing revised land use footprints within the approved Burwood Place Development.

This document is a response to Council's Request for Information (RFI) on the construction staging of 42-60 Railway Parade, Burwood, with respect to the Section 4.55 traffic generations. In response to Council's request the following has been assessed.

The following stages are to be assessed as part of the TIA and form the requirements under the RFI.

- 1. Current traffic volumes from when the road is reopened in the ultimate configuration until Stage 1 of Burwood Place is complete. This is to include delivery vehicles accessing/egressing the Burwood Plaza loading dock.
- 2. Future traffic volumes when stage 2 of the Burwood Place development commences, which will remove the Burwood Plaza loading dock access and Burwood Plaza retail parking access (via Emerald Square development).
- 3. Future traffic volumes when Stage 2 of the Burwood Place development is complete and access to Burwood Place is reintroduced via Emerald Square, along with the new exit from Burwood Place that is to be provided directly onto Wynne Avenue.

As a response to Council, the following has been modelled utilising SIDRA Intersection V10.

Traffic counts were collected by MATRIX on Thursday, 8 May 2025, which identified the peak periods as being;

- → 08:00-09:00 for the AM commuter peak period, and
- → !7:30-18:30 for the PM commuter peak period.

The 2025 existing AM and PM models form the baseline upon which the future models have been compared.

Interpretation made of the traffic count data collected over the duration of this project for the years 2017, 2022 and 2025, indicate that for the modelled road network, negative growth is indicated, as shown below;

→ 2017-2022 -1.34% growth, and

→ 2022-2025 -7.69% growth.

Interpretation of the collected traffic counts taken in year 2025, indicate that Burwood Plaza currently generates some;

→ 159vph ingress/16vph egress during the AM peak, and

→ 268vph ingress/194vph egress during the PM peak.

It was considered conservative to allow 0,5% in vehicular growth on the modelled road network, between each model scenario, to make allowance for any variations regarding the future traffic flows during each stage of construction.

On this basis, network models have been prepared for;

presentation of the existing, counted traffic volumes on the current road network, within the study area, devoid of any construction influence from the Burwood Place development,

The impacts of the temporary closure of Wynne Avenue during Stage 1 of construction, with only the current volume of traffic generated by the Burwood Plaza operations, to the east of Wynne Avenue. The network model required the redistribution of traffic and the reconfiguration of the traffic signal geometries and operations,

The impacts on the road network imposed by the operation and attraction of the retail, commercial and residential components within Stage 1 of Burwood Place, entering and exiting onto Railway Parade from a new access point to the west of Wynne Avenue. Operations are to cease in Burwood Plaza at this time, eliminating the current access conditions on Wynne Avenue and volume of traffic egressing onto Belmore Street.

2030 With the completion of Stage 2, the full operation within Burwood Place will commence. Access will be restored from WynneAvenue and egress onto Belmore Street.

The network models have been run and the findings are presented below.

2025 Temporary Closure of Wynne Avenue - Anticipated duration, 16 weeks

To permit the road network to function at its current capacity and state, motorists at the Burwood Road intersection with Railway Parade, travelling westbound on Railway Parade and turning right from Burwood Road, southbound, destined to make a left turn from Railway Parade into Wynne Avenue, must be directed to:

- > Proceed to the Conder Street roundabout where they must make a left turn into Conder Street.
- > Proceed south along Conder Street to Belmore Street where they perform a left turn.
- → Travel east along Belmore Steet, and then
- > Turn left into Wynne Avenue.

With the modification to the traffic signals adopted within the models, the road network outputs indicated a LOS D for both the AM and PM commuter peak periods.

2028 Completion of Stage 1 and Closure of Burwood Plaza

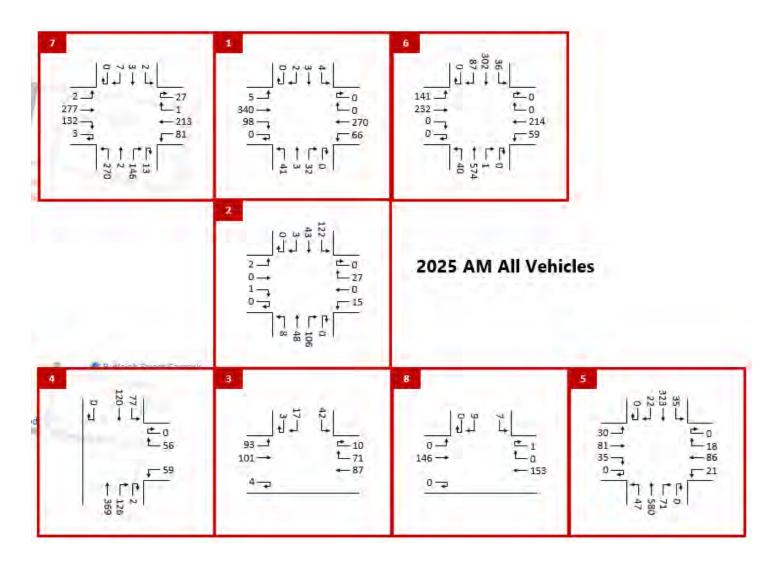
The Stage 1 network models required two (2) further, minor amendments to the Burwood Road intersection with Belmore Street. These modifications involved:

- → Addition of a repeat, variable, D Phase within the phase sequence of the traffic signal operation, and
- → An increase in the cycle length to 140 seconds during both the AM and PM peak periods.

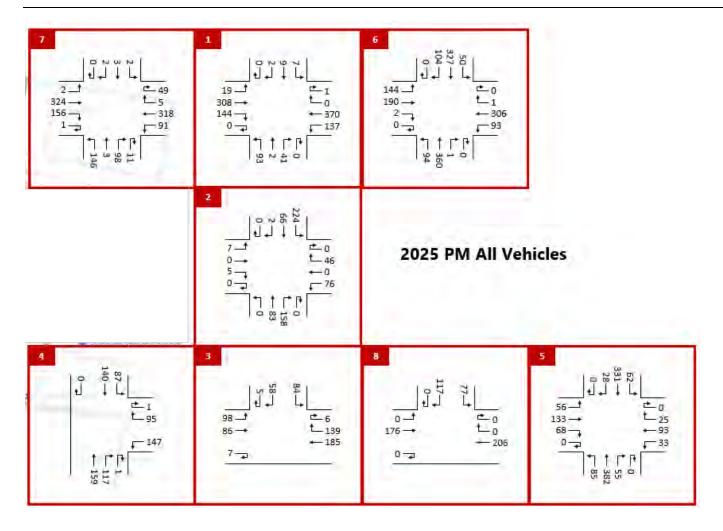
Modelled with the inclusion of the primary access to and from Railway Parade and the addition two minor embellishments, recommended at the Burwood Road intersection with Belmore Street, the road network reported a satisfactory LOS D across both commuter peaks.

2030 Completion of Stage 2 - Full operation of Burwood Place

The predominant change to the road network involves the reduction of Wynne Avenue to one trafficable lane in each direction. While creating a pinch point, the models suggest no degradation of the road network operation. Through motorists on Wynne Avenue retain the same single lane capacity, in both directions, between Railway Parade and Belmore Street.


With access now provided from Railway Parade, Wynne Avenue and egress only onto Belmore Street, the models do not highlight any significant failing on the road network.

The modelling suggests that the road network, with the pinch point in Wynne Avenue and the further recommended modifications to the Burwood Road and Belmore Street intersection, will return a satisfactory LOS D across both the AM and PM commuter peak periods.



APPENDIX A - Year 2025 Traffic Counts by MATRIX

APPENDIX B – Movement Summaries

2025 AM Peak Existing

MOVEMENT SUMMARY

Site: [105(1)] 1e. 2025 AM Base Burwood Rd and Railway

Parade (2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Vehic	cie M	ovemen	t Perfo	orma	nce										
Mov	Turn	Mov		nand	Arr		Deg.	Aver.	Level of	95% Bad	Of Queu			Number	Ave
ID		Class		lows		W5	Satn	Delay	Service			Qued		of Cycles	Spee
					Total H					[Veh.	Dist)		Ratet	o Depart	
			veh/h	%	veh/h	%	V/c	SEC		veh	m.				km/
South	: Burv	vood Roa	ad (S)												
1	L2	All MCs	42	12.5	421	2.5	0.550	27.0	LOS B	8.1	60.0	0.66	0.59	0.66	19
2	T1	All MCs	604	5.1	604	5.1	0.550	19.0	LOS B	8.3	60.5	0.64	0.57	0.64	23.
3	R2	All MCs	0	100.	01	00.	* 0.550	34.5	LOS C	8.3	60.5	0.63	0.55	0.63	28.
Appro	oach		646	5.6	646	5.6	0.550	19.5	LOS B	8.3	60.5	0.64	0.57	0.64	19
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	62	1.7	62	1.7	0.200	41.6	LOS C	2.3	16.1	0.89	0.73	0.89	16
5	T1	All MCs	225	2.8	225	2.8	0.533	35.6	LOS C	8.4	59.9	0.92	0.77	0.92	18.
Appro	ach		287	2.6	287	2.6	0.533	36.9	LOS C	8.4	59.9	0.92	0.76	0.92	16
North	: Burw	rood Roa	d (N)												
7	L2	All MCs	38	0.0	38	0.0	0.114	13.0	LOSA	2.2	16.1	0.46	0.45	0.46	30
8	T1	All MCs	318	11.3	318 1	1.3	0.533	8.7	LOSA	6.4	50.7	0.68	0.88	0.68	11,
9	R2	All MCs	92	28.7	922	8.7	* 0.533	16.2	LOS B	6.4	50.7	0.76	1.03	0.76	10.
Appro	ach		447	13.9	4471	3.9	0.533	10.6	LOSA	6.4	50.7	0.68	0.87	0.68	14.
West:	Railw	ay Parad	de (W)												
10	L2	All MCs	148	20.6	1482	0.6	0.275	28.8	LOS C	5.0	41.1	0.85	0.76	0.85	16
11	T1	All MCs	244	2.6	244	2.6	* 0.554	32.9	LOS C	9.3	66.7	0.95	0.80	0.95	22.
Appro	oach		393	9.4	393	9.4	0.554	31,3	LOS C	9.3	66.7	0.91	0.78	0.91	20.
All Ve	hides		1774	8.0	1774	8.0	0.554	22.7	LOSB	9.3	66.7	0.76	0.72	0.76	18

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 8:59:02 AM
Project: D\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [106(1)] 1f. 2025 AM Base Railway Pde and Wynne Ave

(2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0,5,217

New Site

Site Category, Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time) Site Scenario: 1 | Local Volumes Network Scenario: 1 | Local Volumes

Mov		Mov	Den			nval	Deg	Aver	Level of	95% Bad	CI Queu			Number	
ID		Class		lows HV j	Fi Total	iows HV j	Satn	Delay	Service	(Veh	Dist	Qued		f Cycles Depart	Speed
			ven/h	9/6	veh/n	96	Wc:	sec		veh	m			0.0044	Km/h
South	i: Wyn	ne Avenu	ie (S)												
1	L2	All MCs	43	0.0	43	0.0	0.161	42.5	LOSC	1.8	123	0.99	0.74	0.99	6.5
2	T1	All MCs	3	0.0	3	0.0	*0.136	11.3	LOSA	0.5	3.8	0.36	0.52	0.36	31.1
3	R2	All MCs	34	0.0	34	0.0	0.136	15.8	LOSB	0.5	3.8	0.36	0.52	0.36	14.2
Appr	oach		80	0.0	80	0.0	0.161	30.0	LOSC	1.8	12.3	0.70	0.64	0.70	10.1
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	69	4.5	69	4.5	0.076	24.9	LOSB	2.2	15.9	0.81	0.57	0.81	17.8
5	T1	All MCs	284	11.1	284	11.1	0.281	17.0	LOS B	8.3	63.5	0.76	0.42	0.76	22.8
Appr	bach		354	9.8	354	9.8	0.281	18.6	LOSB	8.3	63.5	0.77	0.45	0.77	18.4
North	: Burv	ood Cen	tral Car	Park	(N)										
7	L2	All MCs	5	0.0	5	0.0	0.018	35.6	LOS.C	0.2	1.3	0.86	0.63	0.86	22.6
8	T1	All MCs	4	0.0	4	0.0	0.011	29.0	LOSC	0.1	1.0	0.82	0.53	0.82	24.7
Appr	oach.		9	0.0	9	0.0	0.018	32.7	LOS C	0.2	1.3	0.84	0.59	0.84	23.5
West	Railw	ray Parac	de (W)												
10	L2	All MCs	5	0.0	5	0.0	0.265	16.1	LOSB	5.2	39.3	0.45	0.40	0.45	35.2
11	T1	All MCs	358	10.6	358	10.6	0.265	6.8	LOSA	5.2	39.3	0.48	0.44	0.48	24.3
12	R2	All MCs	103	1.0	103	1.0	* 0.265	18.7	LOSB	4.0	28.8	0.59	0.61	0.59	18.8
Appr	oach		466	8.4	466	8.4	0,265	9.5	LOSA	5.2	39.3	0.50	0.47	0.50	23.2
All Ve	ehides		909	8.1	909	8.1	0,281	15.1	LOSB	8.3	63.5	0.63	0.48	0.63	19.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday. 17 June 2025 8:59:02 AM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [107(1)] 1g. 2025 AM Base Railway Pde and Conder St

(2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Railway Parade and Conder Street Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Tum	May	Den	una	Ar	nval	Deg	Aver	Level of	95% Back	Ol Queu	€ Prop.	Eff. I	Number	Ave
D.		Class	F	lows	F	ows	Sam	Delay	Service			Qued	Stop of	Cycles	Spee
			[Total	HVI	[Total	HV]) Veh	Dist J		Raleto	Depart	
	-	_	veh/h	%	veh/h	%	v/c	Sec	_	veh	m	_	_		km/
South	: Con	der Stree	t(S)												
1a	L1	All MCs	284	0.4	284	0.4	0.426	4.0	LOSA	3.1	21.8	0.58	0.54	0.58	38.
2	T1	All MCs	2	0.0	2	0.0	0.426	4.3	LOSA	3,1	21.8	0.58	0.54	0.58	36.
3	R2	All MCs	154	2.1	154	2.1	0.426	7.5	LOSA	3.1	21.8	0.58	0.54	0.58	30.
3u	U	All MCs	14	0.0	14	0.0	0.426	8.8	LOSA	3.1	21.8	0.58	0.54	0.58	30.
Appro	ach		454	0.9	454	0.9	0.426	5.3	LOSA	3.1	21.8	0,58	0,54	0,58	36.
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	85	3.7	85	3.7	0.088	4.6	LOSA	0.4	2.7	0.29	0.51	0.29	29.
6a	R1	All MCs	224	9.4	224	9.4	0.199	5.6	LOSA	1.0	7.9	0.28	0.56	0.28	36
6	R2	All MCs	1	0.0	1	0.0	0.199	6.1	LOSA	1.0	7.9	0.28	0.56	0.28	35
6u	U	All MCs	28	55.6	28	55.6	0.199	8.2	LOSA	1.0	7.9	0.28	0.56	0.28	27
Appro	ach		339	11.8	339	11.8	0.199	5.6	LOSA	1.0	7.9	0.28	0.55	0.28	35.
North	Appa	rtments	(N)												
7	L2	All MCs	2	0.0	2	0.0	0.017	6.1	LOSA	0.1	0.6	0.59	0.63	0,59	34
8	T1	All MCs	3	0.0	3	0.0	0.017	5.4	LOSA	0.1	0.6	0.59	0.63	0.59	34.
9b	R3	All MCs	7	0.0	7	0.0	0.017	9.2	LOSA	0.1	0.6	0.59	0.63	0.59	37
9u	U	All MCs	0	0.0	0	0.0	0.017	9.9	LOSA	0.1	0.6	0.59	0,63	0.59	36
Appro	ach		13	0.0	13	0.0	0.017	7.8	LOSA	0.1	0.6	0.59	0.63	0.59	36
North	West:	Railway	Parade	(NE)	i										
27b	L3	All MCs	. 2	0.0	2	0.0	0.400	5.6	LOSA	2.8	20.8	0.52	0,55	0.52	38.
27a	L1	All MCs	292	7.9	292	7.9	0.400	4.9	LOSA	2.8	20.8	0.52	0.55	0.52	38
29a	R1	All MGs	139	3.8	139	3.8	0.400	7.6	LOSA	2.8	20.8	0.52	0.55	0.52	38
29u	U	All MCs	3	0.0	3	0.0	0.400	9.8	LOSA	2.8	20.8	0.52	0.55	0.52	41
Appro	ach		436	6.5	436	6.5	0.400	5.8	LOSA	2.8	20.8	0.52	0.55	0.52	38
	hides		1241		1241	5.9	0.426	5.6	LOSA	3.1	21.8	0.48	0.55	0.48	36

Site Level of Service (LOS) Method: Delay (NSW), Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(1)] 1j. 2025 AM Base Burwood Rd and Belmore St (2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queur	e Prop.	Eff	Number	Aver
ID		Class	F (Total	lows HV j	Fi Total	ows HV j	Satn	Delay	Service	(Veh.	Dist	Qued		of Cycles o Depart	Spee.
			veh/h	1%	veh/h	%	V/c	sec		Veh	m				Km/n
South	: Burv	vood Roa	ad (S)												
1	L2	All MCs	49	0.0	49	0.0	0.121	14.6	LOS B	2.2	15.9	0.38	0.41	0,38	35.2
2	T1	All MCs	611	5.3	611	5.3	0.605	12.7	LOSA	13.3	97.1	0.56	0.54	0.56	33.9
3	R2	All MCs	75	1.4	75	1.4	* 0,605	19,9	LOSB	13.3	97.1	0.59	0.56	0,59	36.1
Appro	oach		735	4.6	735	4.6	0.605	13.6	LOSA	13.3	97.1	0.55	0.53	0.55	31.6
East:	Belmo	ore Stree	t(E)												
4	L2	All MCs	22	9.5	22	9.5	0.461	42.2	LOSC	5,2	36,6	0.95	0.77	0.95	28.1
5	T1	All MCs	91	0.0	91	0.0	0,461	35.4	LOSC	5.2	36,6	0.95	0.77	0.95	22.1
6	R2	All MCs	19	0.0	19	0.0	0.461	42.2	LOS C	5.2	36.6	0.95	0.77	0.95	22.1
Appro	oach		132	1.6	132	1.6	0.461	37.5	LOS C	5.2	36.6	0.95	0.77	0.95	23.6
North	Burv	ood Roa	d (N)												
7	L2	All MCs	37	2.9	37	2.9	0.063	6.9	LOSA	0.6	4.2	0.20	0.34	0.20	36,5
8	T1	All MCs	340	10.8	340	10.8	0.316	3.8	LOSA	3.7	28.2	0.29	0.29	0.29	37.3
9	R2	All MCs	23	0.0	23	0.0	0.316	12.4	LOSA	3.7	28.2	0.30	0.28	0,30	31.0
Appro	oach		400	9.5	400	9.5	0.316	4.5	LOSA	3.7	28.2	0.28	0.29	0.28	37.0
West	Belm	ore Stree	et (VV)												
10	L2	All MCs	32	10.0	32	10.0	0.138	39.8	LOSC	1.2	9.1	0.92	0.71	0.92	7.4
11	T1	All MCs	85	0.0	85	0,0	*0.466	35.8	LOS C	4.8	34.6	0.96	0.77	0.96	23.4
12	R2	All MCs	37	8.6	37	8.6	0,466	44.1	LOS D	4.8	34.6	0.96	0.77	0.96	23.1
Appro	oach		154	4.1	154	4.1	0.466	38.6	LOSC	4.8	34.6	0.95	0.76	0.95	21.4
All Ve	hides		1420	5.6	1420	5.6	0.605	16.0	LOSB	13.3	97.1	0.55	0.51	0.55	30.6

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright @ 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 8:59:02 AM Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [111(1)] 1k. 2025 AM Base Belmore St and Wynne Ave (2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov		(MACHO)	no.						Level of	APRIL POLICE	010		~6	Kill mark and	
	TUITT	Mov	Den			nval	Deg	Aver		95% Back	CLENER			Number	Ave
(D		Class		lows		lows	Satn	Delay	Service	14110	20.1	Qued		i Cycles	Speed
			/ Total van/h		Total veh/in	HV J	V/c	che) Veh	Dist.)		Rateto	Depart	Ton do
H - 14	Dalas	as Observed	-	7/6	venim	20	W	sec	_	veh	in	_		_	km/n
	00/00	ore Street													
5	T1	All MCs	92	0.0	92		0.127	4.0	LOSA	0.7	4.8	0.12	0.55	0.12	27.6
6	R2	All MCs	75	0.0	75	0.0	0.127	6.6	LOSA	0.7	4.8	0.12	0.55	0.12	27.6
6u	U	All MCs	- 11	0.0	11	0.0	0.127	7.8	LOSA	0.7	4.8	0.12	0.55	0.12	27.6
Appro	ach		177	0.0	177	0.0	0.127	5.3	LOSA	0.7	4.8	0.12	0.55	0.12	27.6
North	: Wynı	ne Avenu	e												
7	L2	All MCs	44	9.5	44	9.5	0.065	4.5	LOSA	0.3	2.2	0.28	0.57	0.28	22.6
9	R2	All MCs	18	0.0	18	0.0	0.065	6.3	LOSA	0,3	2.2	0.28	0.57	0.28	22,6
9u	U	All MCs	3	0.0	3	0.0	0.065	7.5	LOSA	0.3	2.2	0.28	0.57	0.28	22.6
Appro	ach	32,0,22	65	6,5	65	6,5	0.065	5.2	LOSA	0.3	2.2	0.28	0.57	0.28	22,6
West	Belm	ore Stree	ť												
10	12	All MCs	98	0.0	98	0.0	0.197	5.1	LOSA	1.1	7.5	0.28	0.50	0.28	34.2
11	T1	All MCs	106	2.0	106	2.0	0.197	4.5	LOSA	1.1	7.5	0.28	0.50	0.28	34.2
120	U.	All MCs	4	0.0	4	0.0	0,197	8.4	LOSA	1.1	7.5	0.28	0.50	0.28	34.2
Appro	ach		208	1.0	208	1.0	0.197	4.8	LOSA	1.1	7.5	0.28	0.50	0.28	34.2
All Ve	hides		451	1.4	451	1.4	0.197	5.1	LOSA	1.1	7.5	0.22	0.53	0.22	30.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 8:59:02 AM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models sipx

Site: [112(1)] 11. 2025 AM Base Belmore St and Conder St (2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: Existing Design Give-Way (Two-Way) Network Scenario: 1 | Local Volumes

letwork Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov ID		Mov Class	Den	and lows		nval ows	Deg Sain	Aver Delay	Level of	95% Bad	CI Queue	Frop Qued		Number	Ave
		01885	Total	HVI	Total	HV j			Service) Ven	Dist.)	Oned		i Cycles Depart	Speed
Caut	h. Can	der Street	veh/h	7/6	veh/h	46	WC.	sec	_	veh	in	_			Km/n
				~ ~		0.0	0.204	4.5	1.00.4	4.0	7.4	0.04	0.00	0.04	40.4
2	T1	All MCs	384	0.0	200	0.0	0.301	1.5	LOSA	1.0	7.1	0.21	0.38	0.21	46.4
3	R2	All MCs	133	0.0	133	0.0	0.301	5.5	LOSA	1.0	7.1	0.21	0.38	0.21	46.4
Appr	oach		517	0.0	517	0.0	0.301	2.5	NA	1.0	7.1	0.21	0.38	0.21	46.4
East	Belme	ore Street													
4	L2	All MCs	62	0.0	62	0.0	0.135	5.0	LOSA	0.5	3.5	0.37	0.57	0.37	42.4
6	R2	All MCs	59	0.0	59	0.0	0.135	8.5	LOSA	0.5	3.5	0.37	0.57	0.37	31.6
Appr	oach		121	0.0	121	0.0	0.135	6.7	LOSA	0.5	3.5	0.37	0.57	0.37	39.8
North	: Con	der Street													
7	L2	All MCs	81	2.6	81	2.6	0.118	4.6	LOSA	0.0	0.0	0.00	0.21	0.00	44.0
8	T1	All MCs	126	5.0	126	5.0	0.118	0.0	LOSA	0.0	0.0	0.00	0.21	0.00	48.2
Аррг	oach		207	4.1	207	4.1	0.118	1.8	NA	0.0	0.0	0.00	0.21	0.00	47.5
All Ve	ehicles		845	1.0	845	1.0	0.301	2.9	NA	1.0	7.1	0.18	0.36	0.18	45.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 8:59:02 AM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [113(1)] 1m. 2025 AM Base Wynne Avenue and Burwood

Place (2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Burwood Place

Site Category, Base Year
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Time	Mov	Den	and	180	nval	Deg	Aver	Level of	95% Back	OF CHICAGO	e Prop	Ett.	Number	Aver
ID.	TUIT	Class		lows		lows	Satn	Delay	Service	30 /n G36/	CIGGO	Oned		Cycles	Spee
		Class	Total				Sauri	Delay	Sel VICE	(Veh	Dist	Ched		Depart	spee.
			venih		veh/n	96	Wc	sec		ven	m		11000	Lepart	Km/r
South	: Wyn	ne Avenu	e (S)												
1	L2	All MCs	8	0.0	8	0.0	0.045	8.9	LOSA	0.8	5.4	0.34	0.32	0.34	42.6
2	T1	All MCs	51	0.0	51	0.0	0.045	4.5	LOSA	0.8	5.4	0.34	0.32	0.34	22.9
3	R2	All MCs	112	0.0	112	0.0	0.133	9.3	LOSA	1.7	11.9	0.39	0.65	0.39	39.0
Appro	ach		171	0.0	171	0.0	0.133	7.9	LOSA	1.7	11.9	0.37	0.53	0.37	38.0
East:	Emen	ald Squar	e/Burw	ood F	Plaza (E)									
4	L2	All MCs	16	0.0	16	0.0	0.061	39.2	LOS C	0.6	4.1	0.89	0.68	0.89	24.3
5	T1	All MCs	0	100,	0	100.	⊕ 0.117	35.0	LOS C	1.1	7.5	0.90	0.71	0.90	32.4
				0		0									
6	R2	All MCs	28	0.0	28	0.0	0.117	39.8	LOS C	1.1	7.5	0.90	0.71	0.90	24
Appro	ach		44	0.2	44	0.2	0.117	39.6	LOS C	1.1	7.5	0.90	0.70	0.90	24.2
North	: Wyn	ne Avenu	e (N)												
7	L2	All MCs	128	0.0	128	0.0	0.142	5.8	LOSA	0.6	4.5	0.09	0.44	0.09	43.4
8	T1	All MCs	45	9.3	45	9.3	*0.142	1.0	LOSA	0.6	4.5	0.09	0.44	0.09	29.2
9	R2	All MCs	3	0.0	3	0.0	0.003	5.6	LOSA	0.0	0.1	0.07	0.54	0.07	42.8
Аррго	oach		177	2.4	177	2.4	0.142	4.6	LOSA	0.6	4.5	0.09	0.44	0.09	42.3
West	Burw	ood Gran	d (W)												
10	L2	All MCs	2	0.0	2	0.0	0.008	38.3	LOSC	0.1	0.5	0.88	0.61	0.88	24.6
11	T1	All MCs	0	0.0	0	0.0	0.005	33.0	LOSC	0.0	0.3	0.87	0.59	0.87	33.0
12	R2	All MCs	. 1	0.0	1	0.0	0.005	38.1	LOSC	0.0	0.3	0.87	0.59	0.87	24.8
Appro	ach		3	0,0	3	0.0	0.008	38.1	LOS C	0.1	0.5	0.87	0.60	0.87	25.
All Ve	hides		395	11	395	1.1	0.142	10.2	LOSA	1.7	11.9	0.31	0.51	0.31	36.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 8:59:02 AM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [114(1)] 1n. 2025 AM Base Belmore St and Burwood

Place Exit (2025 AM EXISTING 8:00-9:00)

Network: [N101(1)] 2025 Existing AM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: (None) Give-Way (Two-Way) Network Scenario: 1 | Local Volumes

Site Scenario: 1 | Local Volumes

		ovement												Vumber	
Mo∨	Tum	Mov		Demand		nval lows	Deg Satn	Aver Delay	Level of Service	95% Back Of Queue Frop Qued			Eff. I Stop of	Ave Speed	
			Total HV					5.55		i Ven	Dist		Rate to Depart		39203
			veh/h		ven/ir	46	V/c	sec		veh	m				km/n
East	Belmo	ore Street													
5	T1	All MCs	1	0.0	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Approach		1	0.0	.1.	0.0	0.001	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0	
North	: Burv	ood Place	Exit												
7	L2	All MCs	7	0.0	7	0.0	0.005	5.9	LOSA	0.0	0.1	0.23	0.53	0.23	44.7
9	R2	All MCs	9	0.0	9	0.0	0.008	6.2	LOSA	0.0	0.2	0.21	0.59	0.21	44.6
Appr	oach		17	0.0	17	0.0	0.008	6.1	LOSA	0.0	0.2	0.22	0.56	0.22	44.6
West	Belm	ore Street													
11	T1	All MCs	147	0,0	147	0.0	0.076	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Approach		147	0,0	147	0.0	0.076	0.0	NA	0,0	0.0	0.00	0.00	0.00	60.0	
All Vehicles			166	0.0	165	0.0	0.076	0.6	NA	0.0	0.2	0.02	0.06	0.02	54.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA gueue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd. | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD. | Licence: NETWORK / 1PC. | Processed: Tuesday, 17 June 2025 8:59:02 AM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

2025 PM Peak Existing

MOVEMENT SUMMARY

Site: [105(2)] 2e. 2025 PM Base Burwood Rd and Railway

Parade (2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Turn Mov Class		Demand Flows		Arrival Flows		Deg. Satn	Aver. Delav	Level of Service	95% Back	Of Queue	e Prop. Qued		Number of Cycles	Aver. Speed
		Class	[Total				Jaui	Delay	Sel vice	[Veh	Dist]	Qued		o Depart	Sheer
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/r
South	: Burv	ood Roa	d (S)												
1	L2	All MCs	99	1.1	99	1.1	0.640	55.0	LOS D	9.4	68.2	0.97	0.83	0.98	11.8
2	T1	All MCs	389	7.0	389	7.0	0.640	45.6	LOS D	11.0	81.3	0.98	0.83	0.98	14.7
3	R2	All MCs	0	100.	0	100.	* 0.640	78.7	LOSF	11.0	81.3	0.98	0.83	0.98	21.6
Appro	ach		489	5.8	489	5.8	0.640	47.5	LOS D	11.0	81.3	0.97	0.83	0.98	11.2
East:	Railw	ay Parade	e (E)												
4	L2	All MCs	98	0.0	98	0.0	0.243	45.8	LOS D	3.8	26.7	0.85	0.74	0.85	17.7
5	T1	All MCs	322	2.0	322	2.0	* 0.649	41.5	LOS C	12.3	87.2	0.93	0.79	0.93	18.7
Appro	oach		420	1.5	420	1.5	0.649	42.5	LOSC	12.3	87.2	0.91	0.78	0.91	15.4
North	: Burw	ood Roa	d (N)												
7	L2	All MCs	53	2.0	53	2.0	0.140	16.3	LOSB	2.9	21.7	0.53	0.52	0.53	27.
8	T1	All MCs	344	8.6	344	8.6	0.655	12.6	LOSA	9.0	69.6	0.81	0.89	0.81	9.
9	R2	All MCs	109	21.2	109	21.2	* 0.655	22.1	LOSB	9.0	69.6	0.90	1.01	0.90	8.
Appro	oach		506	10.6	506	10.6	0.655	15.0	LOSB	9.0	69.6	0.80	0.88	0.80	12.
West	Railw	ay Parad	e (W)												
10	L2	All MCs	152	16.0	152	16.0	0.192	20.7	LOSB	4.4	35.2	0.71	0.71	0.71	19.
11	T1	All MCs	200	3.7	200	3.7	0.364	29.6	LOS C	7.4	53.6	0.89	0.74	0.89	23.
Appro	ach		352	9.0	352	9.0	0.364	25.8	LOSB	7.4	53,6	0.81	0.72	0.81	22.0
All Ve	hicles		1766	6.8	1766	6.8	0.655	32.7	LOSC	12.3	87.2	0.88	0.81	0.88	14.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 2:30:42 PM

Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [106(2)] 2f. 2025 PM Base Railway Pde and Wynne Ave

(2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time) Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Vehi	cie M	ovemen	t Perfo	orma	nce										
Mov ID	Tum	Mov Class	F	and lows HV I		rival lows HV I	Deg Sam	Aver Delay	Level of Service	95% Back	r Ol Queu Dist J	e Prop. Oued	Stop of	Number Cycles Depart	Aver Speen
			veh/h		veh/h	%	v/c	Sec		veh	m				km/l
South	n: VVyn	ne Aveni	ie (S)												
1	12	All MCs	98	1.1	98	1.1	* 0.355	44.6	LOS D	4.2	29.5	0.98	0.78	0.98	6.
2	T1	All MCs	2	0.0	2	0.0	0.173	4.2	LOSA	0.3	1.9	0.14	0.46	0.14	34.
3	R2	All MCs	43	0.0	43	0.0	0.173	8.0	LOSA	0.3	1.9	0.14	0.46	0.14	20.
Approach		143	0.7	143	0.7	0.355	33.0	LOS C	4.2	29.5	0.71	0.68	0.71	8.	
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	144	0.0	144	0.0	0.150	20.0	LOSB	3.6	24.9	0.60	0.67	0.60	19.
5	T1	All MCs	364	1.7	364	1.7	0.361	14.2	LOSA	9,3	65.7	0.62	0.45	0.62	24.
Appro	Approach			1.2	508	1.2	0.361	15.8	LOSB	9.3	65.7	0.62	0.51	0.62	20.
North	Bury	ood Cen	tral Car	Park	(N)										
7	12	All MCs	7	0.0	7	0.0	0.026	37.8	LOSC	0.3	1.9	0.86	0.64	0.86	22.
8	T1	All MCs	12	0.0	12	0,0	0.030	30.7	LOSC	0.4	2.8	0.82	0.57	0.82	24.
Appro	oach		19	0.0	19	0.0	0.030	33.5	LOS C	0.4	2.8	0.84	0.60	0.84	23.
West	Raily	ay Parad	fe (W)												
10	L2:	All MCs	20	0.0	20	0.0	0.310	16.0	LOS B	6.7	50.5	0.48	0.43	0.48	34.
11	T1	All MCs	324	10.4	324	10.4	0.310	7.3	LOSA	6.7	50.5	0.48	0.43	0.48	24.
12	R2	All MCs	152	0.0	152	0.0	± 0.324	18.0	LOSB	4.0	28.3	0.63	0.70	0.63	16.
Аррго	oach		496	6.8	496	6.8	0.324	10.9	LOSA	6.7	50.5	0.52	0.51	0.52	22.
All Ve	ehicles		1166	3.5	1166	3.5	0.361	16.1	LOSB	9.3	65.7	0.59	0.53	0.59	19.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation; ROAD DELAY SOLUTIONS PTY LTD | Licence; NETWORK / 1PC | Processed; Tuesday, 17 June 2025 2:30:42 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [107(2)] 2g. 2025 PM Base Railway Pde and Conder St (2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Railway Parade and Conder Street Site Category: Existing Design Roundabout

Network Scenario: 1 | Local Volumes

Site Scenario: 1 | Local Volumes

Mov	Tum	Mov	Den	and	Ar	rival	Deg	Aver	Level of	95% Back	ol Queue	Prop.	Eff.	Number	Aver
ID		Class		lows	F	ows	Sam	Delay	Service		7	Qued	Stope	f Cycles	Speed
			[Total	HVT	[Total	HV J) Veh	Dist J		Raten	o Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Con	der Stree	t(S)											- 60	
1a	L1	All MCs	259	0.8	259	0.8	0.402	6.2	LOSA	2.9	20.2	0.67	0.62	0.67	39.9
2	T1	All MCs	3	0.0	3	0.0	0.402	6.6	LOSA	2.9	20.2	0.67	0.62	0.67	37.4
3	R2	All MCs	103	3.1	103	3.1	0.402	9.9	LOSA	2.9	20.2	0.67	0.62	0.67	32.7
3u	U	All MCs	12	0.0	12	0.0	0.402	11.3	LOSA	2.9	20.2	0.67	0.62	0.67	32.7
Approach			377	1.4	377	1.4	0.402	7.4	LOSA	2.9	20,2	0,67	0,62	0.67	38.5
East:	Railwa	ay Parade	e (E)												
4		All MCs	94	0.0	94	0.0	0.106	4.9	LOSA	0.5	3.2	0.32	0.53	0.32	28.5
6a	R1	All MCs	354	8.9	354	8.9	0.297	5.8	LOSA	1.7	12.5	0.33	0.57	0.33	36.5
6	R2	All MCs	5	0.0	5	0.0	0.297	6.3	LOSA	1.7	12.5	0.33	0.57	0.33	35.5
6u	U	All MCs	35	0.0	35	0.0	0.297	7.6	LOSA	1.7	12.5	0.33	0.57	0.33	27.4
Approach		-	487	6.5	487	6.5	0.297	5.7	LOSA	1.7	12.5	0.33	0.56	0.33	35.4
North	Арра	rtments (N)												
7	L2	All MCs	2	0.0	2	0.0	0.010	6.2	LOSA	0.0	0.4	0.60	0.58	0.60	34.9
8	T1	All MCs	3	0.0	3	0.0	0.010	5.4	LOSA	0.0	0.4	0.60	0.58	0.60	34.9
9b	R3	All MCs	2	0.0	2	0.0	0.010	9.2	LOSA	0.0	0.4	0.60	0.58	0.60	37.5
9u	U	All MCs	0	100.	0	100.	0.010	13.3	LOSA	0.0	0.4	0.60	0.58	0.60	36.4
				0		0									
Appro	ach		7	1.4	7	1.4	0.010	6.8	LOSA	0.0	0.4	0.60	0.58	0.60	36.0
North	West	Railway	Parade	(NE)											
27Ь	L3	All MCs	2	0.0	2	0.0	0.427	5.3	LOSA	3.2	23.1	0.47	0.52	0.47	38.9
27a	L1	All MCs	341	4.3	341	4.3	0.427	4.4	LOSA	3.2	23.1	0.47	0.52	0.47	38.7
29a	R1	All MCs	164	0.0	164	1.00	0.427	7.2	LOSA	3.2	23.1	0.47	0.52	0.47	38.7
29u	U	All MCs	1	0.0	1	0.0	0.427	9.4	LOSA	3.2	23,1	0.47	0.52	0.47	41.6
Appro	ach		508	2.9	508	2.9	0.427	5.3	LOSA	3.2	23.1	0.47	0.52	0.47	38.7

Site Level of Service (LOS) Method: Delay (NSW), Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(2)] 2j. 2025 PM Base Burwood Rd and Belmore St (2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

May	Turn	Mov	Den	and	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queu	е Ргор.	Eff	Number	Aver
D		Class	Fi (Total	lows HV j		ows HV j	Satin	Delay	Service	(Veh.	Dist	Qued		of Cycles o Depart	Speed
			veh/h	1/6	veh/n	%	V/c	sec		veh	m		-		km/n
South	: Burv	vood Roa	ad (S)												
1	L2	All MCs	89	1.2	89	1.2	0.110	22.6	LOS B	2.3	16,5	0.49	0.58	0.49	31.5
2	T1	All MCs	402	6.8	402	6.8	0.552	21.2	LOSB	12.4	91.5	0.68	0.63	0.68	30.4
3	R2	All MCs	58	0.2	58	0.2	* 0.552	37.3	LOSC	12.4	91.5	0.70	0.63	0.70	34.0
Appro	oach		550	5.2	550	5.2	0.552	23.1	LOSB	12.4	91.5	0.65	0.62	0.65	27.5
East:	Belmo	ore Stree	t(E)												
4	L2	All MCs	35	0.0	35	0,0	0,378	37.2	LOSC	6.0	42.1	0.89	0.74	0.89	29.1
5	T1	All MCs	98	0.0	98	0.0	0,378	30.1	LOSC	6.0	42.1	0.89	0.74	0.89	23.3
6	R2	All MCs	26	4.0	26	4.0	0.378	38.8	LOSC	6.0	42.1	0.89	0.74	0.89	23.3
Appro	oach		159	0.7	159	0.7	0.378	33.1	LOS C	6.0	42.1	0.89	0.74	0.89	25.1
North	Burw	ood Roa	d (N)												
7	L2	All MCs	65	1.6	65	1.6	0.086	27.8	LOS B	2.5	17.7	0.68	0.57	0.68	31.0
8	T1	All MCs	348	8.5	348	8.5	0.431	25.4	LOSB	11.8	88.1	0.80	0.58	0.80	30.9
9	R2	All MOS	29	0.0	29	0.0	0.431	45.7	LOS D	11.8	88.1	0.81	0.58	0.81	18.0
Appro	oach		443	6.9	443	6.9	0.431	27.1	LOSB	11.8	88.1	0.78	0.58	0.78	27.0
West	Belm	ore Stree	et (W)												
10	L2	All MCs	59	1.8	59	1.8	0.167	36.7	LOSC	2.2	15,6	0.87	0.72	0.87	7.9
11	T1	All MCs	140	0.0	140	0.0	0.551	32.5	LOSC	8.4	59.1	0.94	0.79	0.94	24.1
12	R2	All MCs	72	0.0	72	0.0	* 0.551	41.1	LOS C	8.4	59.1	0.94	0.79	0.94	23.8
Appro	oach		271	0.4	271	0.4	0.551	35.7	LOSC	8.4	59.1	0.92	0.77	0.92	22.0
All Ve	ehides		1422	4.3	1422	4.3	0.552	27.9	LOSB	12.4	91.5	0.77	0.65	0.77	26.0

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 2:30:42 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx.

Site: [111(2)] 2k. 2025 PM Base Belmore St and Wynne Ave (2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

May	Turn	Mov	Dem	Lucia		rival	River	Aver.	Level of	050 0-4	aca	Dine	Eff	Number	Aver
	tum						Deg.			95% Back	(D) Gueu				
ID		Class		lows		ows	Satn	Delay	Service	#V.600		Qued		of Cycles	Speel
			(Total							(Veh.	Dist		Kale	o Depart	
-			veh/h	'36	veh/n	1%	V/c	sec	_	Veh	m				km/n
East:	Belmo	ore Stree	t												
5	T1	All MCs	192	0.0	192	0.0	0,298	4,5	LOSA	1.9	13,4	0.30	0.54	0,30	26.4
6	R2	All MCs	173	1.2	173	1.2	0.298	7.0	LOSA	1.9	13.4	0.30	0.54	0.30	26.4
6u	U	All MCs	13	0.0	13	0.0	0.298	8,3	LOSA	1.9	13.4	0,30	0.54	0.30	26.4
Appro	oach		377	0.6	377	0.6	0.298	5.8	LOSA	1.9	13.4	0.30	0.54	0.30	26.4
North	. Wyni	ne Avenu	ie												
7	L2	All MCs	85	0.0	85	0.0	0.156	4.5	LOSA	0.7	5.1	0.26	0.59	0.26	22.4
9	R2	All MCs	71	0.0	71	0.0	0.156	6.3	LOSA	0.7	5.1	0.26	0.59	0.26	22.4
9u	U	All MCs	9	0.0	9	0.0	0.156	7.5	LOSA	0.7	5.1	0.26	0.59	0.26	22.4
Appro	oach		165	0.0	165	0.0	0.156	5.4	LOSA	0.7	5.1	0.26	0.59	0.26	22.4
West	Belm	ore Stree	et												
10	L2	All MCs	144	0.0	144	0.0	0.273	6.1	LOSA	1.6	11.0	0.46	0.56	0.46	32.5
11	T1	All MCs	89	0.0	89	0.0	0.273	5.5	LOSA	1.6	11.0	0.46	0.56	0.46	32.5
12u	U	All MOS	11	0.0	11	0.0	0.273	9.4	LOSA	1.6	11.0	0.46	0.56	0.46	32.6
Appro	oach		244	0.0	244	0.0	0.273	6.0	LOSA	1.6	11.0	0.46	0.56	0.46	32.5
All Ve	hides		786	0.3	786	0.3	0.298	5.8	LOSA	1.9	13.4	0.34	0.56	0,34	28.2

Site Level of Service (LOS) Method: Detay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 2:30:42 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [112(2)] 2I. 2025 PM Base Belmore St and Conder St (2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design

Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den			rival	Deg.	Aver.	Level of	95% Back	Or Queu			Number	Avei
ID		Class		ows		DWS	Satn	Delay	Service			Qued	Stop o	f Cycles	Speet.
			[Total	HV)	Total	HV j				(Veh.	Dist		Ratet	Depart .	
		_	veh/h	iyo.	veh/n	%	V/c	sec		veh	m			-	km/r
South	Con	der Stree	t												
2	T1	All MCs	167	2.5	167	2.5	0.179	0.6	LOSA	8.0	5.5	0.29	0.34	0,29	46.1
3	R2	All MCs	123	0.0	123	0.0	0.179	5.4	LOSA	0.8	5.5	0.29	0.34	0.29	46.1
Appro	ach		291	1.4	291	1.4	0.179	2.6	NA	8.0	5.5	0.29	0.34	0.29	46.1
East:	Belmo	ore Street	t												
4	L2	All MCs	155	0.7	155	0.7	0.231	5,1	LOSA	1.0	6.8	0.35	0.57	0.35	42.9
6	R2	All MCs	100	1.1	100	1.1	0.231	7.2	LOSA	1.0	6.8	0.35	0.57	0.35	32.9
Appro	ach		255	0.8	255	8.0	0,231	5.9	LOSA	1.0	6.8	0.35	0.57	0.35	41.2
North	Cond	der Stree	t.												
7	L2	All MCs	92	0.0	92	0.0	0.133	4.6	LOSA	0.0	0.0	0.00	0.21	0.00	44.1
8	T1	All MCs	147	1.4	147	1.4	0.133	0.0	LOSA	0.0	0.0	0.00	0.21	0.00	48.2
Appro	ach		239	0.9	239	0.9	0.133	1.8	NA	0.0	0.0	0.00	0.21	0.00	47.6
All Ve	hides		784	1.1	784	1.1	0.231	3.4	NA	1.0	6.8	0.22	0.38	0.22	44.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2026 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 2:30:42 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [113(2)] 2m. 2025 PM Base Wynne Avenue and Burwood

Place (2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Burwood Place

Site Category: Base Year
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Tum	Mov	Dem			riva)	Deg.	Aver.	Lavel of	95% Back	Of Queu			Number	Aver
ID (II)		Class	(Total		[Total		Satn	Delay	Service	(Veh.	Dist	Qued		f Cycles o Depart	Spee.
South	1 1/1/10	ne Aveni	veh/h	'76	veh/h	5%	V/C	sec	_	veh	m				-km/r
1	L2	All MCs		0.0	ò	0.0	0.068	10.1	LOSA	1.3	9.2	0.37	0.30	0.37	42.3
2	T1	All MCs		0.0	87		0.068	5.5	LOSA	1.3	9.2	0.37	0.30	0.37	21.8
3	R2	All MCs	. 57	0.0	166	0.0	0.235	11.6	LOSA	3.2	22.4	0.46	0.68	0.46	37.4
Appr		All WOS	254	0.0	254		0.235	9.5	LOSA	3.2	22.4	0.43	0.55	0.43	36.0
East:	Emen	ald Squa	re/Burw	ood F	Plaza (E)									
4	L2	All MCs		0.0		0.0	* 0.255	40.0	LOSC	3.1	21.8	0.90	0.75	0.90	24.
5	T1	All MCs	0	0.0	0	0.0	0.169	33.9	LOSC	1.9	13.0	0.89	0.73	0.89	32.4
6	R2	All MCs	48	0.0	48	0.0	0.169	39.5	LOSC	1.9	13.0	0.89	0.73	0.89	24.2
Appr	oach		129	0.0	129	0.0	0.255	39.8	LOSC	3.1	21.8	0.90	0.75	0.90	24.
North	: Wyn	ne Avenu	ie (N)												
7	L2	All MCs	236	0.0	236	0.0	* 0.255	8.1	LOSA	3.1	21.5	0.25	0.52	0.25	41.4
8	T1	All MCs	69	0.0	69	0.0	0.255	3.1	LOSA	3.1	21.5	0.25	0.52	0.25	24.1
9	R2	All MCs	2	0.0	2	0.0	0.002	6.3	LOSA	0.0	0.1	0.10	0.54	0.10	42.0
Appr	oach		307	0.0	307	0.0	0.255	7.0	LOSA	3.1	21.5	0.25	0.53	0.25	40.2
West	Burw	ood Gran	nd (VV)												
10	L2	All MCs	7	0.0	7	0.0	0.023	37.8	LOS C	0.3	1.9	0.85	0.65	0.85	24.8
11	T1	All MCs	0	0.0	0	0.0	0.020	31.4	LOSC	0.2	1.4	0.86	0.65	0.86	32.6
12	R2	All MCs	5	0.0	5	0.0	0.020	39.0	LOS C	0,2	1.4	0.86	0.65	0.86	24.4
Appr	oach		13	0.0	13	0.0	0.023	38,3	LOSC	0.3	1.9	0.86	0.65	0.86	24.7
All Ve	ehicles		702	0.0	702	0.0	0.255	14.5	LOSA	3.2	22.4	0.44	0.58	0.44	33.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 2:30:42 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [114 (2)] 1n. 2025 PM Base Belmore St and Burwood

Place Exit (2025 PM EXISTING 17:30-18:30)

Network: [N101(2)] 2025 Existing PM (2025 EXISTING

PEAKS)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site Site Category: (None)

Give-Way (Two-Way)
Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov ID	Turn	Mov Class	Dem	and ows		nval ows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queur	e Prop. Oued		Vumber Cycles	Aver Speed
ı.		2000	(Total Veh/h	HV j			V/c	sec	JO 1100	(Veh. Veh	Dist m	5000		Depart	Km/n
East:	Belmo	ore Street													
5	T1	All MCs	216	0.0	216	0.0	0.111	0,0	LOSA	0.0	0.0	0.00	0.00	0,00	59.9
Appn	oach		216	0.0	216	0.0	0.111	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	Burw	ood Plac	e Exit												
7	L2	All MCs	81	0.0	81	0.0	0.058	6.1	LOSA	0.2	1.6	0.27	0.56	0.27	44.4
9	R2	All MCs	123	0.0	123	0.0	0,133	7.3	LOSA	0.5	3.3	0.39	0.69	0.39	43.1
Аррг	oach		204	0.0	204	0.0	0.133	6.8	LOSA	0,5	3.3	0.35	0.64	0.35	43.6
West	: Belm	ore Stree	t												
11	T.1	All MCs	184	0.0	184	0.0	0.094	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appr	oach		184	0.0	184	0.0	0.094	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	hides		604	0.0	604	0.0	0.133	2.3	NA	0.5	3.3	0.12	0.22	0.12	48.4

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 June 2025 2:30:42 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

2025 AM Peak Temporary Wynne Avenue Closure

MOVEMENT SUMMARY

Site: [105(10)] 1e. 2025 AM Base Burwood Rd and Railway Parade - Preferred Route (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perfo	orma	nce										
Mov	Turn	Mov	Den	nand	Arı	rival	Deg.	Aver.	Level of	95% Bacl	k Of Queue	Prop.	Eff.	Number	Ave
ID		Class	F	lows	Fli	ows	Satn	Delay	Service			Qued	Stop o	of Cycles	Spee
			[Total	HVJ	[Total I	HVI				[Veh.	Dist]		Ratet	o Depart	
			veh/h	%	veh/h	%	V/c	sec		veh	m				km.
South	n: Burv	vood Roa	d (S)												
1	L2	All MCs	42	12.5	42	12.5	0.563	28.4	LOS B	8.4	61.9	0.68	0.61	0.68	19
2	T1	All MCs	604	5.1	604	5.1	0.563	20.1	LOS B	8.5	62.4	0.66	0.59	0.66	22
3	R2	All MCs	0	100.	0.	100.	* 0.563	36.4	LOS C	8.5	62.4	0.65	0.57	0.65	28
				0		0									
Appro	oach		646	5.6	646	5.6	0.563	20.6	LOSB	8.5	62.4	0.66	0.59	0.66	19
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	62	1.7	62	1.7	0.183	39.1	LOS C	2.3	16.0	0.87	0.73	0.87	17
5	T1	All MCs	225	2.8	225	2.8	0.488	33.0	LOS C	8.1	57.8	0.90	0.75	0.90	18
Appro	oach		287	2.6	287	2.6	0.488	34.3	LOS C	8.1	57.8	0.90	0.74	0.90	17
North	: Burv	ood Roa	d (N)												
7	L2	All MCs	38	0.0	38	0.0	0.121	14.1	LOSA	2.3	17.4	0.48	0.47	0.48	29
8	T1	All MCs	318	11.3	318	11.3	0.564	9.6	LOSA	6.6	53.0	0.71	0.88	0.71	11
9	R2	All MCs	92	28.7	922	28.7	* 0.564	17.4	LOS B	6.6	53.0	0.79	1.03	0.79	10
Appro	oach		447	13.9	447	13.9	0.564	11.6	LOSA	6.6	53.0	0.71	0.87	0.71	13
West	: Railw	ay Parac	de (W)												
10	L2	All MCs	163	18.7	163 1	18.7	0.295	28.7	LOS C	5.5	44.6	0.85	0.77	0.85	16
11	T1	All MCs	268	2.4	268	2.4	* 0.563	30.6	LOS C	9.9	70.9	0.93	0.78	0.93	22
Appro	oach		432	8.5	432	8.5	0.563	29.9	LOS C	9.9	70.9	0.90	0.78	0.90	20
All Ve	ehicles	i.	1813	7.8	1813	7.8	0.564	22.8	LOSB	9.9	70.9	0.77	0.73	0.77	18
		-													

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:15:15 PM

Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [106(9)] 1f. 2025 AM Base Railway Pde and Wynne Ave -

Preferred Route (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

MAN	Turn	Mov	Dow	hence	Λ,	rival	Dog	Auge	Loughaf	95% Back	OFOUR	a Dean	E# I	Jumbor	Ause
Mov	Turri			nand			Deg.	Aver.	Level of	90% Back	Ol Queu			Number	Aver.
ID		Class		lows		ows	Satn	Delay	Service		-	Qued		Cycles	Speed
			[Total		ALC: NAME OF TAXABLE PARTY.					[Veh.	Dist]		Rate to	Depart	
_		_	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	Railwa	ay Parad	e (E)												
5	T1	All MCs	351	9.0	351	9.0	0.163	12.5	LOSA	4.9	36.7	0.72	0.39	0.72	23.3
Appr	oach		351	9.0	351	9.0	0.163	12.5	LOSA	4.9	36.7	0.72	0.39	0.72	22.2
North	: Burw	ood Cen	tral Car	Park	(N)										
7	L2	All MCs	19	0.0	19	0.0	0.032	35.6	LOS C	0.3	2.3	0.86	0.65	0.86	22.6
Appr	oach		19	0.0	19	0.0	0.032	35.6	LOS C	0.3	2.3	0.86	0.65	0.86	22.6
West	: Railw	ay Parac	le (W)												
10	L2	All MCs	5	0.0	5	0.0	* 0.163	15.6	LOS B	3.0	22.6	0.43	0.37	0.43	35.2
11	T1	All MCs	358	10.6	358	10.6	0.163	6.3	LOSA	3.0	22.6	0.42	0.36	0.42	26.4
Appr	oach	- 1	363	10.4	363	10.4	0.163	6.4	LOSA	3.0	22.6	0.42	0.36	0.42	26.8
All Ve	ehicles		733	9.5	733	9.5	0.163	10.1	LOSA	4.9	36.7	0.58	0.38	0.58	24.0

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:15:15 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [107(10)] 1g. 2025 AM Base Railway Pde and Conder St

- Preferred Route (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Railway Parade and Conder Street Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	and	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queue	e Prop.	Eff. 1	Number	Aver
ID		Class	F	lows	F	ows	Satn	Delay	Service			Qued	Stop of	Cycles	Speed
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate to	Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/r
South	: Con	der Street	t (S)												
1a	L1	All MCs	326	0.3	326	0.3	0.444	3.7	LOSA	3.4	24.0	0.56	0.52	0.56	38.5
2	T1	All MCs	2	0.0	2	0.0	0.444	4.0	LOSA	3.4	24.0	0.56	0.52	0.56	36.5
3	R2	All MCs	154	2.1	154	2.1	0.444	7.2	LOSA	3.4	24.0	0.56	0.52	0.56	30.5
3u	U	All MCs	14	0.0	14	0.0	0.444	8.5	LOSA	3.4	24.0	0.56	0.52	0.56	30.5
Appro	ach		496	0.8	496	8.0	0.444	4.9	LOSA	3.4	24.0	0.56	0.52	0.56	36.8
East:	Railwa	ay Parade	e (E)												
4	L2	All MCs	152	2.1	152	2.1	0.142	4.9	LOSA	0.7	4.8	0.37	0.55	0.37	28.5
6a	R1	All MCs	181	11.6	181	11.6	0.185	6.1	LOSA	0.9	7.4	0.37	0.60	0.37	36.3
6	R2	All MCs	1	0.0	1	0.0	0.185	6.6	LOSA	0.9	7.4	0.37	0.60	0.37	35.4
6u	U	All MCs	28	55.6	28	55.6	0.185	8.9	LOSA	0.9	7.4	0.37	0.60	0.37	27.2
Appro	ach		362	11.0	362	11.0	0.185	5.8	LOSA	0.9	7.4	0.37	0.58	0.37	33.9
North	: Appa	rtments (N)												
7	L2	All MCs	2	0.0	2	0.0	0.019	6.9	LOSA	0.1	0.7	0.66	0.66	0.66	33.9
8	T1	All MCs	3	0.0	3	0.0	0.019	6.2	LOSA	0.1	0.7	0.66	0.66	0.66	33.9
9b	R3	All MCs	7	0.0	7	0.0	0.019	10.0	LOSA	0.1	0.7	0.66	0.66	0.66	37.0
9u	U	All MCs	0	0.0	0	0.0	0.019	10.7	LOSA	0.1	0.7	0.66	0.66	0.66	36.2
Appro	ach		13	0.0	13	0.0	0.019	8.6	LOSA	0.1	0.7	0.66	0.66	0.66	36.0
North	West:	Railway I	arade	(NE)											
27b	L3	All MCs	2	0.0	2	0.0	0.484	5.7	LOSA	3.7	27.4	0.56	0.57	0.56	38.5
27a	L1	All MCs	292	7.9	292	7.9	0.484	5.0	LOSA	3.7	27.4	0.56	0.57	0.56	37.8
29a	R1	All MCs	241	2.2	241	2.2	0.484	7.7	LOSA	3.7	27.4	0.56	0.57	0.56	37.8
29u	U	All MCs	3	0.0	3	0.0	0.484	9.9	LOSA	3.7	27.4	0.56	0.57	0.56	41.0
Appro	ach		538	5.3	538	5.3	0.484	6.2	LOSA	3.7	27.4	0.56	0.57	0.56	37.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(12)] 1j. 2025 AM Base Burwood Rd and Belmore St -

Preferred Route (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perf	rma	nce										
Mov ID	Turn	Mov Class		nand lows		rival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queu	e Prop. Qued		Number Cycles	Aver. Speed
					i Total					[Veh.	Dist]			Depart	
			veh/h		veh/h	%	v/c	sec		veh	m				km/h
South	n: Burw	ood Roa	d (S)												
1	L2	All MCs	49	0.0	49	0.0	0.121	14.6	LOS B	2.2	15.9	0.38	0.41	0.38	35.2
2	T1	All MCs	611	5.3	611	5.3	0.605	12.7	LOSA	13.3	97.1	0.56	0.54	0.56	33.9
3	R2	All MCs	75	1.4	75	1.4	* 0.605	19.9	LOS B	13.3	97.1	0.59	0.56	0.59	36.1
Appro	oach		735	4.6	735	4.6	0.605	13.6	LOSA	13.3	97.1	0.55	0.53	0.55	31.6
East:	Belmo	ore Street	(E)												
4	L2	All MCs	22	9.5	22	9.5	0.443	41.5	LOS C	5.1	36.2	0.95	0.76	0.95	28.2
5	T1	All MCs	91	0.0	91	0.0	0.443	34.7	LOS C	5.1	36.2	0.95	0.76	0.95	22.3
6	R2	All MCs	19	0.0	19	0.0	0.443	41.8	LOS C	5.1	36.2	0.95	0.76	0.95	22.3
Appro	oach		132	1.6	132	1.6	0.443	36.9	LOS C	5.1	36.2	0.95	0.76	0.95	23.7
North	: Burw	ood Road	(N) b												
7	L2	All MCs	37	2.9	37	2.9	0.063	6.9	LOSA	0.6	4.2	0.20	0.34	0.20	36.5
8	T1	All MCs	340	10.8	340	10.8	0.316	3.8	LOSA	3.7	28.3	0.29	0.29	0.29	37.3
9	R2	All MCs	23	0.0	23	0.0	0.316	12.4	LOSA	3.7	28.3	0.30	0.28	0.30	31.0
Appro	oach		400	9.5	400	9.5	0.316	4.6	LOSA	3.7	28.3	0.28	0.29	0.28	37.0
West:	: Belm	ore Stree	t (W)												
10	L2	All MCs	38	8.3	38	8.3	0.163	40.0	LOS C	1.4	10.8	0.92	0.72	0.92	7.4
11	T1	All MCs	93	0.0	93	0.0	* 0.526	36.2	LOS C	5.4	38.9	0.97	0.78	0.97	23.3
12	R2	All MCs	43	7.3	43	7.3	0.526	44.5	LOS D	5.4	38.9	0.97	0.78	0.97	22.9
Appro	oach		174	3.6	174	3.6	0.526	39.1	LOS C	5.4	38.9	0.96	0.77	0.96	21.2
All Ve	hicles		1440	5.6	1440	5.6	0.605	16.3	LOS B	13.3	97.1	0.56	0.51	0.56	30.4

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Critical Movement (Signal Timing)

Site: [111(10)] 1k. 2025 AM Base Belmore St and Wynne Ave

- Preferred Route (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	and	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queu	e Prop.	Eff. I	Number	Aver
ID		Class		ows		ows	Satn	Delay	Service			Qued		Cycles	Speed
			[Total							[Veh.	Dist]		Rate to	Depart	
-			veh/h	%	veh/h	%	V/c	sec	_	veh	m				km/r
East:	Belmo	ore Stree	t												
5	T1	All MCs	158	0.0	158	0.0	0.236	4.1	LOSA	1.4	10.0	0.17	0.55	0.17	27.2
6	R2	All MCs	161	0.0	161	0.0	0.236	6.6	LOSA	1.4	10.0	0.17	0.55	0.17	27.2
6u	U	All MCs	11	0.0	11	0.0	0.236	7.9	LOSA	1.4	10.0	0.17	0.55	0.17	27.2
Appro	ach		329	0.0	329	0.0	0.236	5.5	LOSA	1.4	10.0	0.17	0.55	0.17	27.2
North	: Wynı	ne Avenu	ie												
7	L2	All MCs	25	16.7	25	16.7	0.060	4.6	LOSA	0.3	1.9	0.26	0.59	0.26	22.1
9	R2	All MCs	31	0.0	31	0.0	0.060	6.3	LOSA	0.3	1.9	0.26	0.59	0.26	22.1
9u	U	All MCs	3	0.0	3	0.0	0.060	7.5	LOSA	0.3	1.9	0.26	0.59	0.26	22.1
Appro	ach		59	7.1	59	7.1	0.060	5.6	LOSA	0.3	1.9	0.26	0.59	0.26	22.1
West:	Belm	ore Stree	et												
10	L2	All MCs	200	0.0	200	0.0	0.329	6.0	LOSA	2.0	13.9	0.45	0.55	0.45	32.7
11	T1	All MCs	106	2.0	106	2.0	0.329	5.4	LOSA	2.0	13.9	0.45	0.55	0.45	32.7
12u	U	All MCs	4	0.0	4	0.0	0.329	9.3	LOSA	2.0	13.9	0.45	0.55	0.45	32.7
Appro	ach		311	0.7	311	0.7	0.329	5.8	LOSA	2.0	13.9	0.45	0.55	0.45	32.7
All Ve	hicles		699	0.9	699	0.9	0.329	5.6	LOSA	2.0	13.9	0.30	0.55	0.30	29.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright @ 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:15:15 PM

Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [112(10)] 11. 2025 AM Base Belmore St and Conder St -

Preferred Route (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Dem	and	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queue	e Prop.	Eff.	Number	Aver.
ID		Class		ows		ows	Satn	Delay	Service			Qued		f Cycles	Speed
			[Total							í Veh.	Dist]			o Depart	
			veh/h		veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Con	der Stree	et												
2	T1	All MCs	384	0.0	384	0.0	0.277	1.6	LOSA	0.7	5.2	0.20	0.38	0.20	46.8
3	R2	All MCs	82	0.0	82	0.0	0.277	6.2	LOSA	0.7	5.2	0.20	0.38	0.20	46.8
Appr	oach		466	0.0	466	0.0	0.277	2.4	NA	0.7	5.2	0.20	0.38	0.20	46.8
East	Belmo	ore Stree	t												
4	L2	All MCs	62	0.0	62	0.0	0.172	5.0	LOSA	0.6	4.4	0.41	0.59	0.41	42.0
6	R2	All MCs	80	0.0	80	0.0	0.172	8.9	LOSA	0.6	4.4	0.41	0.59	0.41	30.7
Appr	oach		142	0.0	142	0.0	0.172	7.2	LOSA	0.6	4.4	0.41	0.59	0.41	38.6
North	n: Cond	der Stree	t												
7	L2	All MCs	249	0.8	249	8.0	0.214	4.6	LOSA	0.0	0.0	0.00	0.36	0.00	40.7
8	T1	All MCs	126	5.0	126	5.0	0.214	0.0	LOSA	0.0	0.0	0.00	0.36	0.00	47.0
Appr	oach		376	2.2	376	2.2	0.214	3.1	NA	0.0	0.0	0.00	0.36	0.00	44.6
All V	ehicles		984	0.9	984	0.9	0.277	3.4	NA	0.7	5.2	0.16	0.40	0,16	44.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tah)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:15:15 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [113(1)] 1m. 2025 AM Base Wynne Avenue and Burwood

Place (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Burwood Place

Site Category: Base Year

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Marie	Trues	Mary	Daw	ond	A	ei rol	Doc	Aver.	Level of	OEO/ Dool	OFOLIN	o Dron	Eff. 1	di mahare	Arras
Mov ID	Turn	Mov Class	Dem	ows		rival ows	Deg. Satn	Delay		95% Back	Of Queur	Qued		Number Cycles	Aver. Speed
עו		Class	Total				ગવામ	Delay	Service	[Veh.	Dist]	Queu		Depart	oheen
			veh/h		veh/h	%	v/c	sec		veh	m Dist j		naie io	Depair	km/h
South	: Wm	ne Avenu		7.0	V 5(1)/11	2.0	V/-C	200		V 0.11					Kullan
1	L2	All MCs		0.0	8	0.0	0.045	8.9	LOSA	0.8	5.4	0.34	0.32	0.34	42.6
2	T1	All MCs	51	0.0	51	0.0	0.045	4.5	LOSA	0.8	5.4	0.34	0.32	0.34	32.8
3	R2	All MCs	112	0.0	112	0.0	0.134	9.6	LOSA	1.7	12.2	0.40	0.65	0.40	38.7
Appro	ach	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	171	0.0	171	0.0	0.134	8.1	LOSA	1.7	12.2	0.38	0.53	0.38	38.3
East:	Emera	ald Squar	e/Burw	ood F	Plaza (E)									
4		All MCs		0.0	24,2	0.0	0.061	39.2	LOS C	0.6	4.1	0.89	0.68	0.89	24.3
5	T1	All MCs		100.		100.	* 0.117	35.0	LOS C	1.1	7.5	0.90	0.71	0.90	32.4
				0		0									
6	R2	All MCs	28	0.0	28	0.0	0.117	39.8	LOS C	1.1	7.5	0.90	0.71	0.90	25.2
Appro	ach		44	0.2	44	0.2	0.117	39.6	LOS C	1.1	7.5	0.90	0.70	0.90	24.9
North	: Wynr	ne Avenu	e (N)												
7	L2	All MCs	128	0.0	128	0.0	0.142	10.2	LOSA	2.6	18.5	0.39	0.57	0.39	39.9
8	T1	All MCs	45	9.3	45	9.3	* 0.142	4.8	LOSA	2.6	18.5	0.39	0.57	0.39	21.1
9	R2	All MCs	3	0.0	3	0.0	0.003	9.6	LOSA	0.0	0.3	0.35	0.57	0.35	39.4
Appro	ach		177	2.4	177	2.4	0.142	8.8	LOSA	2.6	18.5	0.39	0.57	0.39	38.2
West:	Burw	ood Gran	nd (W)												
10	L2	All MCs	2	0.0	2	0.0	0.008	38.3	LOS C	0.1	0.5	0.88	0.61	0.88	25.7
11	T1	All MCs	0	0.0	0	0.0	0.005	33.0	LOSC	0.0	0.3	0.87	0.59	0.87	33.0
12	R2	All MCs	1	0.0	1	0.0	0.005	38.1	LOS C	0.0	0.3	0.87	0.59	0.87	24.8
Appro	ach		3	0.0	3	0.0	0.008	38.1	LOS C	0.1	0.5	0.87	0.60	0.87	25.8
All Ve	hicles		395	1.1	395	1.1	0.142	12.2	LOSA	2.6	18.5	0.45	0.57	0.45	35.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

V Site: [114(5)] 1n. 2025 AM Base Belmore St and Burwood Place Exit - Preferred Route (2025 AM EXISTING 8:00-9:00)

Network: [N101(3)] 2025 AM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None) Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehic	cle M	ovemer	rt Perfo	rma	ince										
Mov ID	Turn	Mov Class		nand lows		rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queu	e Prop. Qued		Number Cycles	Aver Speed
			[Total veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate to	Depart	km/h
East:	Belmo	ore Stree	t												
5	T1	All MCs	1	0.0	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach		1	0.0	1	0.0	0.001	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
North	: Burw	ood Plac	ce Exit												
7	L2	All MCs	7	0.0	7	0.0	0.005	5.9	LOSA	0.0	0.1	0.23	0.53	0.23	44.7
9	R2	All MCs	9	0.0	9	0.0	0.008	6.2	LOSA	0.0	0.2	0.21	0.59	0.21	44.6
Appro	ach		17	0.0	17	0.0	0.008	6.1	LOSA	0.0	0.2	0.22	0.56	0.22	44.6
West:	Belm	ore Stree	et												
11	T1	All MCs	147	0.0	147	0.0	0.076	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach		147	0.0	147	0.0	0.076	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	hicles		165	0.0	165	0.0	0.076	0.6	NA	0.0	0.2	0.02	0.06	0.02	54.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:15:15 PM

Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

2025 PM Peak Temporary Wynne Avenue Closure

MOVEMENT SUMMARY

Site: [105(9)] 2e. 2025 PM Base Burwood Rd and Railway Parade - Preferred Route (2025 PM EXISTING 17:30-18:30) Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queu	e Prop	Eff	Number	Av∈r
	Class		lows		ows	Satn	Delay	Service			Qued		of Cycles	Speed
									í Veh.	Dist I				1000
		veh/h			%	v/c	sec		veh	m				km/l
Burv	ood Roa	d (S)												
L2	All MCs	99	1.1	99	1.1	0.256	15.7	LOS B	4.6	33.7	0.47	0.50	0.47	22.
T1	All MCs	389	7.0	389	7.0	0.256	9.0	LOSA	4.7	35.1	0.47	0.43	0.47	26.4
R2	All MCs	0	100.	0	100.	0.256	18.5	LOSB	4.7	35.1	0.46	0.39	0.46	31.
ach		489	5.8	489	5.8	0.256	10.4	LOSA	4.7	35.1	0.47	0.45	0.47	25.
Railwa	ay Parade	e (E)												
L2	All MCs	98	0.0	98	0.0	0.220	42.0	LOS C	3.7	25.9	0.82	0.73	0.82	18.
T1	All MCs	322	2.0	322	2.0	* 0.586	37.3	LOS C	11.6	82.9	0.89	0.76	0.89	19.
ach		420	1.5	420	1.5	0.586	38.4	LOS C	11.6	82.9	0.87	0.75	0.87	16.
Burw	ood Road	d (N)												
L2	All MCs	53	2.0	53	2.0	0.126	17.7	LOS B	2.6	19.3	0.56	0.55	0.56	26.
T1	All MCs	344	8.6	344	8.6	0.588	15.0	LOSB	12.4	96.0	0.73	0.68	0.73	10.
R2	All MCs	109	21.2	1093	21.2	* 0.588	26.4	LOS B	12.4	96.0	0.77	0.71	0.77	9.
ach		506	10.6	506	10.6	0.588	17.8	LOS B	12.4	96.0	0.72	0.67	0.72	13.
Railw	ay Parad	e (W)												
L2	All MCs	152	16.0	152	16.0	0.346	36.2	LOS C	5.9	47.1	0.92	0.79	0.92	14.
T1	All MCs	200	3.7	200	3.7	0.333	27.9	LOS B	7.3	52.5	0.87	0.72	0.87	23.
ach		352	9.0	352	9.0	0.346	31.5	LOS C	7.3	52.5	0.89	0.75	0.89	20.
icles		1766	6.8	1766	6.8	0.588	23.4	LOSB	12.4	96.0	0.72	0.64	0.72	18.
1 T	L2 T1 R2 ach L2 T1 ach Burw L2 T1 R2 ach Railw L2 T1 R2 ach	Burwood Roa L2 All MCs T1 All MCs R2 All MCs ach Railway Parade L2 All MCs T1 All MCs ach Burwood Roac L2 All MCs T1 All MCs R2 All MCs R2 All MCs Ach Railway Parad L2 All MCs Ach Railway Parad L2 All MCs Ach Railway Parad L2 All MCs T1 All MCs	Total veh/h	Total HV veh/h %	Total HV Total veh/h	Total HV Total HV Veh/h	Total HV Total HV Veh/h	Total HV Total HV Veh/h % Veh/h % V/c sec	Total HV Total HV Veh/h % V/C Sec	Total HV Total HV Veh/h % Veh/h % V/c sec Veh	Total HV Total HV Veh/h	Total HV Total HV Weh/h Weh/h	Total HV Total HV Total HV Weh/h Weh	Total HV Total HV Total HV Sec Veh M Neh Neh

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:17:28 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [106(10)] 2f. 2025 PM Base Railway Pde and Wynne Ave -

Preferred Route (2025 PM EXISTING 17:30-18:30)

Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehic	cle M	ovemen	t Perfo	orma	nce										
Mov ID	Turn	Mov Class		nand lows		rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queu	e Prop. Qued		Number Cycles	Aver. Speed
			[Total veh/h		[Total veh/h	HV] %	v/c	sec		[Veh.veh	Dist] m		Rate to	Depart	km/h
East:	Railw	ay Parad	e (E)												
5	T1	All MCs	508	1.2	508	1.2	* 0.270	14.2	LOSA	7.3	51.5	0.70	0.40	0.70	23.6
Appro	ach		508	1.2	508	1.2	0.270	14.2	LOSA	7.3	51.5	0.70	0.40	0.70	20.9
North	Burw	ood Cen	tral Car	Park	(N)										
7	L2	All MCs	19	0.0	19	0.0	0.035	38.8	LOS C	0.4	2.5	0.88	0.66	0.88	21.8
Appro	ach		19	0.0	19	0.0	0.035	38.8	LOS C	0.4	2.5	0.88	0.66	0.88	21.8
West:	Railw	ay Parad	de (W)												
10	L2	All MCs	20	0.0	20	0.0	0.151	14.2	LOSA	2.9	21.6	0.42	0.38	0.42	35.0
11	T1	All MCs	324	10.4	324	10.4	0.151	5.8	LOSA	2.9	21.6	0.40	0.35	0.40	26.6
Appro	ach		344	9.8	344	9.8	0.151	6.3	LOSA	2.9	21.6	0.40	0.35	0.40	28.1
All Ve	hicles		872	4.6	872	4.6	0.270	11.6	LOSA	7.3	51.5	0.59	0.38	0.59	23.2

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:17:28 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

😽 Site: [107(9)] 2g. 2025 PM Base Railway Pde and Conder St -

Preferred Route (2025 PM EXISTING 17:30-18:30)

Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Railway Parade and Conder Street Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Tum	Mov	Dem	and	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queue	e Prop.	Eff. 1	Vumber	Aver
ID		Class	FI	ows	F	ows	Satn	Delay	Service			Qued	Stop of	Cycles	Speed
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate to	Depart	
		-	veh/h	%	veh/h	%	v/c	sec	-	veh	m	_			km/r
South	: Cond	der Stree	t (S)												
1a	L1	All MCs	211	1.0	211	1.0	0.327	5.3	LOSA	2.3	16.1	0.58	0.58	0.58	40.3
2	T1	All MCs	3	0.0	3	0.0	0.327	5.7	LOSA	2.3	16.1	0.58	0.58	0.58	37.6
3	R2	All MCs	103	3.1	103	3.1	0.327	9.0	LOSA	2.3	16.1	0.58	0.58	0.58	33.4
3u	U	All MCs	12	0.0	12	0.0	0.327	10.4	LOSA	2.3	16.1	0.58	0.58	0.58	33.4
Appro	ach		328	1.6	328	1.6	0.327	6.7	LOSA	2.3	16.1	0.58	0.58	0.58	38.8
East:	Railwa	ay Parade	e (E)												
4	L2	All MCs	238	0.0	238	0.0	0.229	5.3	LOSA	1.2	8.3	0.43	0.59	0.43	27.8
6a	R1	All MCs	257	12.3	257	12.3	0.262	6.6	LOSA	1.4	10.9	0.43	0.63	0.43	35.9
6	R2	All MCs	5	0.0		0.0	0.262	7.0	LOSA	1.4	10.9	0.43	0.63	0.43	35.2
6u	U	All MCs	35	0.0	35	0.0	0.262	8.3	LOSA	1.4	10.9	0.43	0.63	0.43	26.7
Appro	ach		535	5.9	535	5.9	0.262	6.1	LOSA	1.4	10.9	0.43	0.61	0.43	33.4
North	: Appa	rtments (N)												
7	L2	All MCs	2	0.0	2	0.0	0.012	7.5	LOSA	0.1	0.5	0.69	0.62	0.69	34.1
8	T1	All MCs	3	0.0	3	0.0	0.012	6.7	LOSA	0.1	0.5	0.69	0.62	0.69	34.1
9b	R3	All MCs	2	0.0	2	0.0	0.012	10.5	LOSA	0.1	0.5	0.69	0.62	0.69	37.2
9u	U	All MCs	0	100.	0	100.	0.012	15.3	LOS B	0.1	0.5	0.69	0.62	0.69	36.0
				0		0									
Appro	ach		7	1.4	7	1.4	0.012	8.1	LOSA	0.1	0.5	0.69	0.62	0.69	35.2
North'	West:	Railway I	arade	(NE)											
27b	L3	All MCs	2	0.0	2	0.0	0.541	5.5	LOSA	4.7	33.4	0.53	0.54	0.53	38.6
27a	L1	All MCs	341	4.3	341	4.3	0.541	4.6	LOSA	4.7	33.4	0.53	0.54	0.53	37.9
29a	R1	All MCs	316	0.0	316	0.0	0.541	7.3	LOSA	4.7	33.4	0.53	0.54	0.53	37.9
29u	U	All MCs	1	0.0		0.0	0.541	9.6	LOSA	4.7	33.4	0.53	0.54	0.53	41.1
Appro	ach		660	2.2	660	2.2	0.541	5.9	LOSA	4.7	33.4	0.53	0.54	0.53	37.9
****	hicles		1531	2.4	1531	3.4	0.541	6.2	LOSA	4.7	33.4	0.51	0.57	0.51	36.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(11)] 2j. 2025 PM Base Burwood Rd and Belmore St -

Preferred Route (2025 PM EXISTING 17:30-18:30)

Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem	and lows		rival ows	Deg. Satn	Aver. Delav	Level of Service	95% Back	Of Queu	e Prop. Qued		Number of Cycles	Aver Speed
		Class	[Total				3411	Dolay	50,,,60	[Veh.	Dist]	GULU		o Depart	орос
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/r
South	: Burv	ood Roa	id (S)												
1	L2	All MCs	89	1.2	89	1.2	0.108	22.9	LOS B	2.3	16.2	0.52	0.61	0.52	30.8
2	T1	All MCs	402	6.8	402	6.8	0.541	20.4	LOS B	12.2	89.6	0.66	0.61	0.66	30.9
3	R2	All MCs	58	0.2	58	0.2	* 0.541	29.6	LOS C	12.2	89.6	0.67	0.62	0.67	34.4
Appro	oach		550	5.2	550	5.2	0.541	21.8	LOS B	12.2	89.6	0.64	0.61	0.64	28.0
East:	Belmo	ore Street	(E)												
4	L2	All MCs	35	0.0	35	0.0	0.352	35.4	LOS C	5.8	40.9	0.87	0.73	0.87	29.5
5	T1	All MCs	98	0.0	98	0.0	0.352	28.4	LOS B	5.8	40.9	0.87	0.73	0.87	23.8
6	R2	All MCs	26	4.0	26	4.0	0.352	37.7	LOS C	5.8	40.9	0.87	0.73	0.87	23.8
Appro	oach		159	0.7	159	0.7	0.352	31.5	LOS C	5.8	40.9	0.87	0.73	0.87	25.6
North	: Burw	ood Roa	d (N)												
7	L2	All MCs	65	1.6	65	1.6	0.086	15.0	LOS B	1.2	8.5	0.35	0.51	0.35	33.8
8	T1	All MCs	348	8.5	348	8.5	0.430	11.6	LOSA	6.7	49.7	0.45	0.42	0.45	35.1
9	R2	All MCs	29	0.0	29	0.0	0.430	21.5	LOS B	6.7	49.7	0.45	0.42	0.45	25.4
Appro	oach		443	6.9	443	6.9	0.430	12.7	LOSA	6.7	49.7	0.43	0.43	0.43	32.6
West	: Belm	ore Stree	t (VV)												
10	L2	All MCs	76	1.4	76	1.4	0.191	34.9	LOS C	2.8	19.6	0.86	0.73	0.86	8.2
11	T1	All MCs	163	0.0	163	0.0	0.541	30.7	LOS C	9.1	63.9	0.92	0.78	0.92	24.7
12	R2	All MCs	72	0.0	72	0.0	* 0.541	39.1	LOS C	9.1	63.9	0.92	0.78	0.92	24.4
Appro	oach		311	0.3	311	0.3	0.541	33.7	LOS C	9.1	63.9	0.90	0.77	0.90	22.3
All Ve	hicles		1462	4.2	1462	4.2	0.541	22.6	LOS B	12.2	89.6	0.66	0.60	0.66	27.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [111(9)] 2k. 2025 PM Base Belmore St and Wynne Ave -

Preferred Route (2025 PM EXISTING 17:30-18:30)

Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows	F	rival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back		e Prop. Qued	Stop c	Number of Cycles	Aver Speed
Ш			[Total veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Ratet	o Depart	km/r
East:	Belmo	ore Street	t												
5	T1	All MCs	332	0.0	332	0.0	0.465	4.7	LOSA	3.7	25.8	0.37	0.53	0.37	26.0
6	R2	All MCs	255	0.8	255	8.0	0.465	7.2	LOSA	3.7	25.8	0.37	0.53	0.37	26.0
6u	U	All MCs	13	0.0	13	0.0	0.465	8.4	LOSA	3.7	25.8	0.37	0.53	0.37	26.0
Appro	ach		599	0.4	599	0.4	0.465	5.8	LOSA	3.7	25.8	0.37	0.53	0.37	26.0
North	: Wynı	ne Avenu	e												
7	L2	All MCs	117	0.0	117	0.0	0.191	4.5	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
9	R2	All MCs	78	0.0	78	0.0	0.191	6.3	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
9u	U	All MCs	9	0.0	9	0.0	0.191	7.5	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
Appro	ach		204	0.0	204	0.0	0.191	5.3	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
West	Belm	ore Stree	t												
10	L2	All MCs	398	0.0	398	0.0	0.588	8.4	LOSA	5.1	35.6	0.72	0.67	0.77	28.7
11	T1	All MCs	89	0.0	89	0.0	0.588	7.8	LOSA	5.1	35.6	0.72	0.67	0.77	28.7
12u	U	All MCs	11	0.0	11	0.0	0.588	11.7	LOSA	5.1	35.6	0.72	0.67	0.77	28.7
Appro	ach		498	0.0	498	0.0	0.588	8.4	LOSA	5.1	35.6	0.72	0.67	0.77	28.7
All Ve	hicles		1301	0.2	1301	0.2	0.588	6.7	LOSA	5.1	35.6	0.49	0.59	0.51	27.0

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:17:28 PM

Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

V Site: [112(9)] 2l. 2025 PM Base Belmore St and Conder St -

Preferred Route (2025 PM EXISTING 17:30-18:30)

Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemer	t Perfo	rma	ince										
Mov ID	Turn	Mov Class		ows	F	rival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queu	e Prop. Qued	Stop o	Number f Cycles	Aver. Speed
			veh/h		[Total veh/h	⊓v] %	v/c	sec		į ven. veh	Dist] m		Rate it	Depart	km/h
South	n: Con	der Stree	et												
2	T1	All MCs	167	2.5	167	2.5	0.213	1.7	LOSA	1.0	7.3	0.46	0.53	0.46	45,1
3	R2	All MCs	123	0.0	123	0.0	0.213	7.0	LOSA	1.0	7.3	0.46	0.53	0.46	45.1
Appr	oach		291	1.4	291	1.4	0.213	4.0	NA	1.0	7.3	0.46	0.53	0.46	45.1
East:	Belmo	ore Stree	t												
4	L2	All MCs	172	0.6	172	0.6	0.347	5.2	LOSA	1.5	10.9	0.44	0.60	0.44	42.2
6	R2	All MCs	157	0.7	157	0.7	0.347	8.8	LOSA	1.5	10.9	0.44	0.60	0.44	31.2
Appr	oach		328	0.6	328	0.6	0.347	6.9	LOSA	1.5	10.9	0.44	0.60	0.44	39.7
North	: Cond	der Stree	t.												
7	L2	All MCs	387	0.0	387	0.0	0.302	4.6	LOSA	0.0	0.0	0.00	0.39	0.00	40.0
8	T1	All MCs	147	1.4	147	1.4	0.302	0.0	LOSA	0.0	0.0	0.00	0.39	0.00	46.7
Appr	oach		535	0.4	535	0.4	0.302	3.3	NA	0.0	0.0	0.00	0.39	0.00	43.7
All Ve	ehicles		1154	0.7	1154	0.7	0.347	4.5	NA	1.5	10.9	0.24	0.48	0.24	42.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright @ 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:17:28 PM

Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [113(4)] 2m. 2025 PM Base Wynne Avenue and Burwood

Place - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Burwood Place

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F	and lows		rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queu	e Prop. Qued		Number Cycles	Äver. Speed
			[Total							í Veh.	Dist]			Depart	74 8 2 2 2 2
			veh/h		veh/h	%	v/c	sec		veh	m				km/h
South	ı: Wyn	ne Avenu	ue (S)												
1	L2	All MCs	9	0.0	9	0.0	0.010	13.3	LOSA	0.2	1.3	0.35	0.50	0.35	40.2
2	T1	All MCs	3	0.0	3	0.0	0.010	8.8	LOSA	0.2	1.3	0.35	0.50	0.35	27.5
3	R2	All MCs	447	0.0	447	0.0	* 0.476	16.0	LOS B	9.7	67.8	0.53	0.72	0.53	37.2
Appro	oach		460	0.0	460	0.0	0.476	15.9	LOS B	9.7	67.8	0.53	0.72	0.53	34.5
East:	Emer	ald Squar	e/Burw	ood I	Plaza (E)									
4	L2	All MCs	136	0.0	136	0.0	* 0.494	43.6	LOS D	5.7	39.7	0.96	0.79	0.96	23.0
5	T1	All MCs	0	0.0	0	0.0	0.001	32.6	LOS C	0.0	0.1	0.86	0.51	0.86	33.3
6	R2	All MCs	0	0.0	0	0.0	0.001	40.7	LOS C	0.0	0.1	0.86	0.51	0.86	26.2
Appro	oach		136	0.0	136	0.0	0.494	43.6	LOS D	5.7	39.7	0.96	0.79	0.96	23.0
North	: Wyn	ne Avenu	e (N)												
7	L2	All MCs	0	0.0	0	0.0	0.004	9.9	LOSA	0.1	0.5	0.32	0.23	0.32	43.3
8	T1	All MCs	5	0.0	5	0.0	0.004	4.6	LOSA	0.1	0.5	0.32	0.23	0.32	28.8
9	R2	All MCs	0	0.0	0	0.0	0.000	9.9	LOSA	0.0	0.0	0.34	0.53	0.34	39.2
Appro	oach		5	0.0	5	0.0	0.004	4.8	LOSA	0.1	0.5	0.32	0.23	0.32	30.8
West	Burw	ood Grar	nd (VV)												
10	L2	All MCs	0	0.0	0	0.0	0.000	38.7	LOS C	0.0	0.0	0.86	0.52	0.86	25.6
11	T1	All MCs	0	0.0	0	0.0	0.066	34.0	LOS C	0.5	3.6	0.92	0.68	0.92	31.1
12	R2	All MCs	13	0.0	13	0.0	0.066	44.5	LOS D	0.5	3.6	0.92	0.68	0.92	22.7
Appro	oach		13	0.0	13	0.0	0.066	44.4	LOS D	0.5	3.6	0.92	0.68	0.92	22.8
All Ve	hicles		614	0.0	614	0.0	0.494	22.5	LOS B	9.7	67.8	0.63	0.73	0.63	30.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

V Site: [114 (3)] 1n. 2025 PM Base Belmore St and Burwood Place Exit - Preferred Route (2025 PM EXISTING 17:30-18:30) Network: [N101(4)] 2025 PM Stage 1 Wynne Ave Closure

(2025 TEMPORARY CLOSURE WYNNE AVE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None) Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov ID	Turn	Mov Class	Dem F	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Back	Of Queu	e Prop. Qued		Number Cycles	Aver. Speed
			[Total					0.0900		(Veh.	Dist]			Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m	-			km/h
East:	Belmo	re Street													
5	T1	All MCs	216	0.0	216	0.0	0.111	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	oach		216	0.0	216	0.0	0.111	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	: Burw	ood Plac	e Exit												
7	L2	All MCs	81	0.0	81	0.0	0.060	6.2	LOSA	0.2	1.7	0.30	0.57	0.30	44.2
9	R2	All MCs	123	0.0	123	0.0	0.137	7.5	LOSA	0.5	3.4	0.41	0.71	0.41	42.8
Appro	oach		204	0.0	204	0.0	0.137	7.0	LOSA	0.5	3.4	0.37	0.65	0.37	43.4
West	Belm	ore Stree	t												
11	T1	All MCs	213	0.0	213	0.0	0.109	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	oach		213	0.0	213	0.0	0.109	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	hicles		633	0.0	633	0.0	0.137	2.3	NA	0.5	3.4	0.12	0.21	0.12	48.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 23 June 2025 9:17:28 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

2028 AM Peak Stage 1 Completed

MOVEMENT SUMMARY

Site: [105(5)] 1e. 2028 AM Base Burwood Rd and Railway Parade - Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovement	Perto	rma	nce										
Mov	Turn	Mov	Dem	and	Αr	rival	Deg.	Aver.	Level of	95% Back	Of Queue	e Prop.		Number	Ave
ID		Class	F	ows	FI	ows	Satn	Delay	Service			Qued	Stop c	of Cycles	Spee
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Ratet	o Depart	
			veh/h	%	veh/h	%	v/c	sec	5	veh	m		200	10000	km
South	n: Burv	ood Roa	d (S)												
1	L2	All MCs	94	5.6	94	5.6	0.590	24.8	LOS B	9.5	69.3	0.43	0.45	0.43	21.
2	T1	All MCs	614	5.0	614	5.0	0.590	18.7	LOS B	10.0	72.9	0.43	0.41	0.43	24.
3	R2	All MCs	0	100.	0	100.	* 0.590	32.2	LOS C	10.0	72.9	0.44	0.38	0.44	29
				0		0									
Appro	oach		707	5.1	707	5.1	0.590	19.5	LOS B	10.0	72.9	0.43	0.42	0.43	19
East:	Railw	ay Parade	e (E)												
4	L2	All MCs	62	1.7	62	1.7	0.219	74.6	LOS F	5.2	36.8	0.85	0.72	0.85	14.
5	T1	All MCs	273	2.3	273	2.3	0.586	70.6	LOS F	14.4	102.8	0.92	0.77	0.92	14.
Appro	oach		335	2.2	335	2.2	0.586	71.3	LOS F	14.4	102.8	0.90	0.76	0.90	10
North	: Burw	ood Road	d (N)												
7	L2	All MCs	38	0.0	38	0.0	0.121	15.8	LOS B	3.6	27.1	0.42	0.43	0.42	28.
8	T1	All MCs	318	11.3	318	11.3	0.565	12.1	LOSA	10.0	79.2	0.62	0.85	0.62	10.
9	R2	All MCs	118	22.3	118	22.3	* 0.565	19.7	LOS B	10.0	79.2	0.71	1.05	0.71	9.
Appro	oach		474	13.1	474	13.1	0.565	14.3	LOSA	10.0	79.2	0.63	0.87	0.63	12
West	Railw	ay Parad	e (W)												
10	L2	All MCs	178	17.2	178	17.2	0.298	41.6	LOS C	9.4	75.5	0.83	0.77	0.83	12
11	T1	All MCs	293	2.2	293	2.2	* 0.590	50.7	LOS D	17.8	127.2	0.95	0.81	0.95	17.
Appro	oach		471	7.8	471	7.8	0.590	47.3	LOS D	17.8	127.2	0.90	0.80	0.90	16
All Ve	hicles		1986	7.2	1986	7.2	0.590	33.6	LOSC	17.8	127.2	0.67	0.67	0.67	15

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [106(5)] 1f. 2028 AM Base Railway Pde and Wynne Ave -Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Lavel of	95% Back	OfQueue			Number	Aver
ID		Class	Total		[Total		Satn	Delay	Service	(Veh.	Dist	Qued		f Cycles o Depart	Spee
				1/6	veh/h	%	V/C	Sec	_	Veh	m		_	_	km/r
South	i: Wyn	ne Avenu	ie (S)												
1	L2	All MCs	45	0.0	45	0.0	0.268	68.2	LOSE	2.9	20,6	0.96	0.74	0,96	4.
2	T1	All MCs	3	0.0	3.	0.0	* 0.238	59.2	LOSE	2.5	17.2	0.96	0.73	0.96	17.
3	R2	All MCs	35	0.0	35	0.0	0.238	68,4	LOSE	2.5	17.2	0.96	0.73	0.96	4.
Appro	oach		83	0.0	83	0.0	0.268	67.9	LOSE	2.9	20.6	0.96	0.74	0.96	5.
East:	Railw	ay Parade	e (E)												
4	L2	All MCs	20	15.8	20	15,8	0.163	14.7	LOS B	3.9	29.1	0.30	0,29	0.30	29.
5	T1	All MCs	409	7.7	409	7.7	0.163	4.2	LOSA	3.9	29.1	0.27	0.25	0.27	30.
Appro	oach		429	8.1	429	8.1	0.163	4.7	LOSA	3.9	29.1	0.27	0.25	0.27	30.
North	Burw	ood Cent	tral Car	Park	(N)										
7	L2	All MCs	19	0.0	19	0.0	0.102	65.3	LOSE	1.2	8.3	0.94	0.70	0.94	16.
8	T1	All MCs	0	0.0	0	0.0	0.000	54.5	LOS D	0.0	0.0	0.87	0.46	0.87	18.
Appro	oach		19	0.0	19	0.0	0.102	65,3	LOSE	1.2	8.3	0.93	0.70	0.93	16.
West	Railw	ay Parad	e (W)												
10	L2	All MCs	5	0.0	5	0.0	0.261	15.7	LOSB	6.8	50.8	0.31	0.28	0.31	36.
11	T1	All MCs	447	8.5	447	8.5	0.261	5.3	LOSA	6.8	50.8	0.34	0.33	0.34	26.
12	R2	All MCs	107	1.0	107	1.0	* 0.261	15,7	LOSB	5.6	41.1	0.43	0.50	0.43	21.
Appro	oach		560	7.0	560	7.0	0.261	7.4	LOSA	6,8	50.8	0,36	0.37	0.36	25.
All Ve	hides		1092	6.7	1092	6.7	0.268	12.0	LOSA	6.8	50.8	0.38	0.35	0.38	21.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [107(5)] 1g. 2028 AM Base Railway Pde and Conder St -Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network; [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Railway Parade and Conder Street Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows	F	nval ows	Deg. Saln	Aver. Delay	Lavel of Service	95% Back		Prop. Qued		Number of Cycles	Ave Spee
			(Total		[Total ven/n	HV j	V/c	sec		(Veh. veh	Dist m		Rate	o Depart	km/
South	: Con	der Stree		- 50			V/-	300		Vall		_			MARIE
1a	L1	All MCs	296	0.4	296	0.4	0.508	5.3	LOSA	3.9	27.6	0.72	0.65	0.75	37.
2	T1	All MCs	2	0.0	2	0.0	0.508	5.6	LOSA	3.9	27.6	0.72	0.65	0.75	35.
3	R2	All MCs	160	2.0	160	2.0	0.508	8,9	LOSA	3.9	27.6	0.72	0.65	0.75	28
3u	U	All MCs	15	0.0	15	0.0	0.508	10.1	LOSA	3.9	27.6	0.72	0.65	0.75	28
Appro	oach		473	0.9	473	0.9	0.508	6.7	LOSA	3.9	27.6	0.72	0.65	0.75	35
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	165	1.9	165	1.9	0.164	4.8	LOSA	0.9	6.6	0.44	0.53	0.44	24
6a	R1	All MCs	275	7.7	275	7.7	0.294	5,9	LOSA	1.9	14.7	0.47	0.57	0.47	35
5	R2	All MCs	1	0.0	1	0.0	0.294	6.4	LOSA	1.9	14.7	0.47	0.57	0.47	34
6u	U	All MCs	93	17.0	93	17.0	0.294	8.0	LOSA	1.9	14.7	0.47	0.57	0.47	23
Appro	ach		534	7.5	534	7.5	0.294	6.0	LOSA	1.9	14.7	0.46	0.56	0.46	32
North	: Appa	artments	(N)												
7	L2	All MCs	2	0.0	2	0.0	0.020	7.2	LOSA	0.1	0.7	0.67	0.67	0.67	33
8	T1	All MCs	3	0.0	3	0.0	0.020	6.4	LOSA	0.1	0.7	0.67	0.67	0.67	33
9b	R3	All MCs	7	0,0	7	0.0	0.020	10.3	LOSA	0.1	0.7	0.67	0.67	0.67	36
9u	U	All MCs	0	0.0	0	0.0	0.020	10.9	LOSA	0.1	0.7	0.67	0.67	0.67	36
Appro	ach		13	0.0	13	0.0	0.020	8.8	LOSA	0.1	0.7	0.67	0.67	0.67	35
North	West:	Railway	Parade	(NE)											
27b	L3	All MCs	2	0.0	2	0.0	0.488	6.3	LOSA	3,6	26.5	0.63	0.60	0.63	38
27a	L1	All MCs	302	7.7	302	7.7	0.488	5.6	LOSA	3.6	26.5	0.63	0.60	0,63	37
29a	R1	All MCs	187	2.8	187	2.8	0.488	8.3	LOSA	3.6	26.5	0.63	0.60	0.63	37
29u	U	All MCs	3	0.0	3	0.0	0.488	10.5	LOSA	3.6	26.5	0.63	0.60	0.63	40
Appro	ach		495	5.7	495	5.7	0.488	6.6	LOSA	3.6	26.5	0.63	0.60	0.63	37
All Ve	hides		1514	4.8	1514	4.8	0.508	6.4	LOSA	3.9	27.6	0.60	0.60	0.61	35

Site Level of Service (LOS) Method: Delay (NSW), Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(5)] 1j. 2028 AM Base Burwood Rd and Belmore St -Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	nand	Αr	rival	Deg.	Aver.	Lavel of	95% Back	Of Queue	e Prop.	Eff	Number	Aver
ID		Class		lows HV j	F Total	ows HV j	Sain	Delay	Service	(Veh.	Dist	Qued		f Cycles Depart	Speed
			veh/h	196	veh/h	%	V/c	sec		veh	m		-		km/n
South	: Burv	ood Roa	d(S)												
1	L2	All MCs	7.7	0.0	77	0.0	0.153	39.7	LOSC	4.9	35.2	0,52	0.55	0,52	28.8
2	T1	All MCs	611	5.3	611	5.3	0.740	42.6	LOS D	31.2	227.7	0.78	0.73	0.78	26.3
3	R2	All MCs	78	1.4	78	1.4	* 0.740	49.6	LOS D	31.2	227.7	0.82	0.75	0.82	31.1
Appro	ach		765	4.4	765	4.4	0.740	43.0	LOS D	31.2	227.7	0.76	0.71	0.76	21.7
East:	Belmo	ore Street	(E)												
4	L2	All MCs	23	9.1	23	9.1	0.447	63.0	LOSE	8.5	60.4	0.95	0.78	0.95	24.2
5	T1	All MCs	94	0.0	94	0.0	0.447	55.8	LOS D	8.5	60.4	0.95	0.78	0.95	17.7
6	R2	All MCs	20	0.0	20	0.0	0.447	64.5	LOSE	8.5	60.4	0.95	0.78	0.95	17.7
Appro	oach		137	1.5	137	1,5	0.447	58.3	LOSE	8.5	60.4	0.95	0.78	0.95	19.2
North	Burw	ood Roa	d (N)												
7	L2	All MCs	38	2.8	38	2.8	0.075	7.8	LOSA	1.2	9.0	0.20	0.31	0.20	36.2
8	T1	All MCs	352	10.5	352	10.5	0.375	4.6	LOSA	4.4	33.1	0.37	0.68	0.37	31.2
9	R2	All MCs	27	0.0	27	0.0	* 0.375	9.8	LOSA	4.4	33.1	0.40	0.75	0.40	17.3
Appro	ach		417	9.1	417	9.1	0.375	5,3	LOSA	4.4	33.1	0.35	0.65	0.35	31.2
West	Belm	ore Stree	t (W)												
10	L2	All MCs	29	0.0	29	0.0	0.158	41.2	LOS C	3.4	23.9	0.86	0.70	0.86	6.0
11	T1	All MCs	109	0.0	109	0,0	0.745	62.1	LOSE	11.3	80.4	0.96	0.84	1.03	18.3
12	R2	All MCs	84	3.8	84	3.8	* 0.745	74.5	LOSF	11.3	80.4	1.00	0.89	1.10	17.4
Appro	ach		223	1.4	223	1.4	0.745	64.0	LOSE	11.3	80.4	0.96	0.84	1.03	17.1
All Ve	hides		1542	5.0	1542	5.0	0.745	37.2	Los C	31.2	227.7	0.69	0.72	0.70	22.6

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx.

Site: [111(5)] 1k, 2028 AM Base Belmore St and Wynne Ave -Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

The same		A Street	B. C.					A		SEM BULL	aia			All miles	
Mov	tum	Mov	Dem			rival	Deg.	Aver.	Lavel of	95% Back	OfQueu			Number	Aver
ID		Class	Fi (Total i	ows av i		OWS HV i	Satn	Delay	Service	(Veh.	Dist	Qued		of Cycles o Depart	Speed
			veh/h		veh/n	%	V/c	sec		veh	m		naic i	o mekan	Km/r
East.	Belmo	ore Stree	t												
5	T1	All MCs	95	0.0	95	0.0	0.136	4.1	LOSA	8.0	5.4	0.16	0.55	0.16	27.4
6	R2	All MCs	78	0.0	78	0.0	0.136	6.6	LOSA	0.8	5.4	0.16	0.55	0.16	27.4
6u	U	All MCs	11	0.0	11	0.0	0.136	7.9	LOSA	0.8	5.4	0.16	0.55	0.16	27.4
Appro	oach		183	0.0	183	0.0	0.136	5.4	LOSA	8.0	5.4	0.16	0.55	0.16	27.4
North	. Wynr	ne Avenu	ie.												
7	L2	All MCs	46	9.1	46	9,1	0.087	5.1	LOSA	0.4	2.8	0.34	0.61	0.34	21.2
9	R2	All MCs	31	0.0	31	0.0	0.087	6.8	LOSA	0.4	2.8	0.34	0.61	0.34	21.2
9u	U	All MCs	3	0.0	3	0.0	0.087	8.1	LOSA	0.4	2.8	0.34	0.61	0.34	21.2
Appro	oach		80	5.3	80	5.3	0.087	5.9	LOSA	0.4	2.8	0.34	0.61	0.34	21.2
West	Belm	ore Stree	et												
10	L2	All MCs	199	0.0	199	0.0	0.352	5.2	LOSA	2.3	15.9	0.33	0.50	0.33	33.8
11	T1	All MCs	187	1.1	187	1.1	0.352	4.6	LOSA	2.3	15.9	0.33	0.50	0.33	33.8
12u	U	All MCs	4	0.0	4	0.0	0.352	8.5	LOSA	2.3	15.9	0.33	0.50	0.33	33.8
Appro	oach		391	0.5	391	0.5	0.352	4.9	LOSA	2.3	15.9	0.33	0.50	0.33	33.8
All Ve	hides		654	1.0	654	1.0	0.352	5.2	LOSA	2.3	15.9	0.28	0.52	0,28	31.2

Site Level of Service (LOS) Method: Detay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D;\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [112(5)] 11, 2028 AM Base Belmore St and Conder St -Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design

Give-Way (Two-Way) Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Maria	T	Alberta	Den	Bereit.	. 4.	rival	River	Acces	Lavel of	0000 0-4	nen.	Die		all south an	Acres
Mov	tum	Mov					Deg.	Aver.		95% Back	(C) Cueu			Number	Aver
ID		Class		ows		DWS	Satn	Delay	Service			Qued		Cycles	Spee.
			Total		[Total			- 100		(Ven.	Dist		Rate to	Depart	
-	_	_	veh/h	%	Veh/h	1//	V/C	sec	_	veh	m	_	_		Km/r
South	: Con	der Stree	t												
2	T1	All MCs	400	0.0	400	0.0	0.362	2.0	LOSA	1,6	10.9	0.33	0.47	0,33	45.7
3	R2	All MCs	183	0.0	183	0.0	0.362	6.2	LOSA	1.6	10.9	0.33	0.47	0.33	45.7
Appro	oach		583	0.0	583	0.0	0.362	3.3	NA	1.6	10.9	0.33	0.47	0.33	45.7
East:	Belmo	ore Stree	t												
4	L2	All MCs	64	0.0	64	0,0	0.158	5.0	LOSA	0.6	4.0	0.41	0.58	0.41	41.8
6	R2	All MCs	61	0.0	61	0,0	0.158	9,9	LOSA	0.6	4.0	0.41	0.58	0.41	30.4
Appro	oach		125	0.0	125	0.0	0.158	7.4	LOSA	0,6	4.0	0.41	0.58	0.41	39.1
North	Cond	der Stree	t												
7	L2	All MCs	213	1.0	213	1.0	0.193	4.6	LOSA	0.0	0.0	0.00	0.34	0.00	41.1
8	T1	All MCs	126	5.0	126	5.0	0.193	0.0	LOSA	0.0	0.0	0.00	0.34	0.00	47.2
Appro	oach		339	2.5	339	2.5	0.193	2.9	NA	0.0	0.0	0.00	0.34	0.00	45.1
All Ve	hides		1047	0.8	1047	0.8	0.362	3.7	NA	1.6	10.9	0.23	0.44	0.23	44.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula; SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd. | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD. | Licence: NETWORK / 1PC. | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [113(5)] 1m. 2028 AM Base Wynne Avenue and Burwood

Place - Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network; [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Burwood Place

Site Category: Base Year
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

May	Turn	Mov	Den		Αr	rival	Deg.	Aver.	Level of	95% Back	Of Queu	е Ргор.	Eff	Number	Aver
D		Class	Fi (Total	lows HV j		ows HV j	Satn	Delay	Service	(Veh.	Dist	Qued		of Cycles o Depart	Spee
-	-	_	veh/h	%	veh/h	%	V/c	sec	_	veh	m	_		-	km/r
South	i: Wyn	ne Avenu	ie (S)												
1	L2	All MCs	11	0.0	11	0.0	0.010	7.8	LOSA	0,2	1.4	0.22	0.50	0.22	41.
2	T1	All MCs	2	95.2	2	95.2	0.010	3.5	LOSA	0.2	1.4	0.22	0.50	0.22	19.
3	R2	All MCs	280	0.0	280	0.0	* 0.255	8.7	LOSA	5.1	35.4	0.29	0.63	0.29	40.0
Appro	ach		293	0.7	293	0.7	0.255	8.6	LOSA	5.1	35.4	0.29	0.63	0.29	39.
East:	Emen	ald Squar	e/Burw	ood F	Plaza (E)									
4	L2	All MCs	31	0.0	31	0.0	*0.198	70.5	LOSF	2.0	14.0	0.96	0.72	0.96	17.
5	T1	All MCs	0	0.0	0	0.0	0.001	60.8	LOSE	0.0	0.1	0.92	0.52	0.92	26.
6	R2	All MCs	0	0.0	0	0.0	0.001	65,7	LOSE	0,0	0.1	0.92	0.52	0.92	18.
Appro	ach		31	0.0	31	0.0	0.198	70,5	LOSE	2.0	14.0	0.96	0.72	0.96	17.
North	: Wyn	ne Avenu	e (N)												
7	L2	All MCs	0	0.0	0	0.0	0.006	6.7	LOSA	0.0	0.6	0.13	0.10	0.13	43.
8	T1	All MCs	5	98.0	5	98.0	0.006	1.8	LOSA	0.0	0.6	0.13	0.10	0.13	30
9	R2	All MCs	0	0.0	0	0.0	0.000	5.1	LOSA	0.0	0.0	0.04	0.53	0.04	43.
Appro	ach		6	94.3	6	94.3	0.006	1.9	LOSA	0.0	0.6	0.13	0.11	0.13	32.
West	Burw	ood Gran	id (VV)												
10	L2	All MCs	0	0.0	0	0.0	0.001	66.7	LOSE	0.0	0.0	0.93	0.52	0.93	17.
11	T1	All MCs	0	0.0		0,0	0.023	60.8	LOSE	0.2	1.5	0.94	0.63	0.94	25.
12	R2	All MCs	3	0.0	3	0.0	0.023	68.9	LOSE	0.2	1.5	0.94	0.63	0.94	17.
Appro	ach		3	0.0	3	0.0	0.023	68.6	LOSE	0.2	1.5	0.94	0.63	0.94	17.
All Ve	hides		332	2.2	332	2.2	0.255	14.8	LOSB	5.1	35.4	0.35	0.63	0.35	35.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx.

Site: [114(3)] 1n. 2028 AM Base Belmore St and Burwood Place Exit - Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site Site Category: (None) Give-Way (Two-Way)

Mov	Turn		Den			rival	Deg.	Aver.	Lavel of	95% Back	Of Queu			Vumber	Aver
ID		Class	Total		[Total		Sam	Delay	Service	(Veh.	Dist	Qued		Cycles Depart	Speel
-	-	_	veh/h	"Yo	veh/h	%	V/C	sec	_	veh	m		_		km/n
East:	Belmo	re Street													
5	T1	All MCs	188	0.0	188	0.0	0.097	0,0	LOSA	0.0	0.0	0.00	0.00	0,00	60.0
Appro	ach		188	0.0	188	0.0	0.097	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
North	Burw	ood Place	e Exit												
7	L2	All MCs	.7	0.0	7	0.0	0.006	6.2	LOSA	0.0	0.1	0.30	0.54	0.30	44.2
9	R2	All MCs	9	0.0	9	0,0	0.010	7.2	LOSA	0.0	0.2	0.38	0.63	0.38	43.3
Appro	ach		17	0.0	17	0.0	0.010	6.8	LOSA	0.0	0.2	0.34	0.59	0.34	43.7
West	Belm	ore Street	t												
11	T.1	All MCs	231	0.0	231	0.0	0.118	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	oach		231	0.0	231	0.0	0.118	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Ve	hides		436	0.0	436	0.0	0.118	0.3	NA	0.0	0.2	0.01	0.02	0.01	57.4

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [1 (2)] 2028 AM Railway Pde Access (2025 AM EXISTING 8:00-9:00)

Network: [N101(7)] 2028 AM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Left-In Left-Out Site Category: (None) Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

								A		SAM A TI	a a a u		F-20 1		
Mov	Tum		Den			riva)	Deg.	Aver.	Lavel of	95% Back	OrQueur			Vumber	Aver
ID		Class		ows		ows	Satn	Delay	Service			Qued		Cycles	Speed
			Total			HV)				(Veh.	Dist		Rate to	Depart	
	-	_	veh/h	%	Veh/h	1%	V/C	SEC	_	veh	m	_			km/n
South	n: Deve	elopment	Access												
1	L2	All MCs	214	2.0	214	2.0	0.123	5,8	LOSA	0.5	3.4	0.00	0.53	0,00	51.0
Appro	oach		214	2.0	214	2.0	0.123	5.8	NA	0.5	3.4	0.00	0.53	0.00	51.0
East.	Railwa	ay Parad	ė												
2	L2	All MCs	256	1.6	256	1.6	0.147	5.3	LOSA	0.6	3.9	0.00	0.53	0.00	50.2
3	T1	All MCs	421	0.0	421	0.0	0.108	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	oach		677	0.6	677	0.6	0.147	2.0	NA	0,6	3.9	0.00	0.20	0.00	51.8
West	Railw	ay Parac	le												
4	T1	All MCs	116	9.1	116	9.1	0.027	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	oach		116	9.1	116	9.1	0.027	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	hides		1006	1.9	1006	1.9	0.147	2.6	NA	0.6	3.9	0.00	0.25	0.00	51.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 12:59:25 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

2028 PM Peak Stage 1 Completed

MOVEMENT SUMMARY

Site: [105(6)] 2e. 2028 PM Base Burwood Rd and Railway Parade - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queue	e Prop.	Eff.	Number	Aver
ID		Class	F	lows	F	ows	Satn	Delay	Service			Qued	Stop	of Cycles	Speed
			[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate	to Depart	
	1.0		veh/h	%	veh/h	%	v/c	sec		veh	m				km/r
South	n: Burv	ood Roa	d (S)												
1	L2	All MCs	89	1.2	89	1.2	0.642	26.7	LOS B	9.1	65.5	0.62	0.58	0.62	19.9
2	T1	All MCs	624	4.4	624	4.4	0.642	19.5	LOS B	9.5	69.5	0.62	0.56	0.62	23.2
3	R2	All MCs	- 1	100. 0	1	100. 0	* 0.642	37.2	LOS C	9.5	69.5	0.62	0.54	0.62	28.9
Appro	oach		715	4.1	715	4.1	0.642	20.4	LOS B	9.5	69.5	0.62	0.56	0.62	19.1
East:	Railwa	ay Parade	e (E)												
4	L2	All MCs	63	0.0	63	0.0	0.239	49.1	LOS D	3.1	21.6	0.90	0.73	0.90	16.6
5	T1	All MCs	273	2.3	273	2.3	* 0.638	43.5	LOS D	10.4	74.1	0.95	0.80	0.95	17.5
Appro	oach		336	1.9	336	1.9	0.638	44.6	LOS D	10.4	74.1	0.94	0.79	0.94	15.0
North	: Burw	ood Roa	d (N)												
7	L2	All MCs	40	2.6	40	2.6	0.128	13.4	LOSA	2.6	19.2	0.45	0.45	0.45	30.1
8	T1	All MCs	323	9.1	323	9.1	0.598	9.2	LOSA	6.9	53.9	0.70	0.85	0.70	11.2
9	R2	All MCs	115	20.2	115	20.2	* 0.598	17.9	LOS B	6.9	53.9	0.81	1.03	0.81	9.9
Appro	oach		478	11.2	478	11.2	0.598	11.7	LOSA	6.9	53.9	0.71	0.86	0.71	13.7
West	: Railw	ay Parad	le (W)												
10	L2	All MCs	173	14.0	173	14.0	0.300	30.1	LOS C	6.2	48.3	0.85	0.77	0.85	15.8
11	T1	All MCs	232	3.2	232	3.2	0.527	32.6	LOS C	9.0	64.7	0.92	0.77	0.92	22.3
Appro	oach		404	7.8	404	7.8	0.527	31.5	LOS C	9.0	64.7	0.89	0.77	0.89	20.0
All Ve	hicles		1933	6.3	1933	6.3	0.642	24.8	LOSB	10.4	74.1	0.76	0.72	0.76	17.6

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 1:24:00 PM

Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [106(6)] 2f, 2028 PM Base Railway Pde and Wynne Ave -Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	nand	Ar		Deg.	Aver.	Level of	95% Back	Of Queu	е Ргор.	Eff	Number	Aver
ID		Class		lows		ows	Satn	Delay	Service			Qued	Stop o	f Cycles	Speed
			[Total							(Veh.	Dist		Rateto	Depart	
-	-	_	veh/h	%	veh/n	%	V/C	sec	_	Veh	m	_	_		km/n
South	i: Wyn	ne Avenu	ue (S)												
1	L2	All MCs	0	0.0	0	0.0	0.000	43.0	LOS D	0.0	0.0	0.99	0.52	0,99	6.4
2	T1	All MCs	0	0.0	0	0.0	0.001	29.1	LOSC	0.0	0.0	0.78	0.47	0.78	24.9
3	R2	All MCs	0	0.0	0	0.0	0.001	35,9	LOSC	0.0	0.0	0.78	0.47	0.78	8.2
Appro	oach		0	0.0	0	0.0	0.001	36.0	LOSC	0.0	0.0	0.85	0.49	0.85	15.7
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	144	0.0	144	0,0	0.146	19,3	LOS B	4.6	31.9	0.77	0.58	0,77	17.9
5	T1	All MCs	6	100.	6	100.	0.008	3.2	LOSA	0.1	0.7	0.22	0.15	0,22	33.3
				0		0									
Appro	oach		151	4.2	151	4.2	0.146	18.6	LOSB	4.6	31.9	0.75	0.56	0.75	18.3
North	Burv	ood Cen	tral Car	Park	(N)										
7	L2	All MCs	19	0.0	19	0.0	* 0.070	39.2	LOS C	0.7	5.1	0.88	0.68	88.0	21.7
8	T1	All MCs	0	0.0	0	0.0	0.000	30.9	LOS C	0.0	0.0	0.82	0.43	0.82	24.1
Appro	oach		19	0.0	19	0.0	0.070	39.1	LOS C	0.7	5.1	0.88	0.68	0.88	21.7
West	Railw	ay Para	de (W)												
10	L2	All MCs	20	0.0	20	0.0	0.020	12.3	LOSA	0.4	2.6	0.45	0.58	0.45	32.4
11	T1	All MCs	324	10.4	324	10.4	0.279	6.2	LOSA	5.6	43.0	0.43	0.37	0.43	26.9
12	R2	All MCs	0	100.	0	100.	* 0.279	18.5	LOSB	5.6	43.0	0.43	0.37	0.43	26.9
				0		0									
Appro	ach		344	9.8	344	9,8	0.279	6.6	LOSA	5,6	43.0	0.43	0.39	0.43	27.9
All Ve	hides		514	7.8	514	7.8	0.279	11.3	LOSA	5.6	43.0	0.54	0.45	0.54	23.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK./1PC | Processed: Wednesday, 18 June 2025 1:24:00 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [107(6)] 2g. 2028 PM Base Railway Pde and Conder St -Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network; [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Railway Parade and Conder Street Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	nand	Ar	riva)	Deg.	Aver.	Lavel of	95% Back	Of Queue	Prop.	Eff	Number	Aver
D		Class	F	lows	FI	ows	Satn	Delay	Service			Qued	Stop o	f Cycles	Spee.
			(Total	HVj	Total	HV)				(V∈h.	Dist		Ratet	o Depart	
		_	veh/h	196	veh/n	%	V/C	sec		veh	m		-	1000	km/r
South	Con	der Stree	t(S)												
1a	L1	All MCs	211	1.0	211	1.0	0.334	5.3	LOSA	2.2	15,4	0,59	0.60	0,59	40.3
2	T1	All MCs	3	0.0	3	0.0	0.334	5.6	LOSA	2.2	15.4	0.59	0.60	0.59	37.
3	R2	All MCs	103	3.1	103	3.1	0.334	9.0	LOSA	2.2	15.4	0.59	0,60	0,59	33.
3u	U	All MCs	12	0.0	12	0.0	0.334	10.4	LOSA	2.2	15.4	0.59	0.60	0.59	33.
Appro	ach		328	1.6	328	1.6	0.334	6.6	LOSA	2.2	15.4	0.59	0.60	0.59	38.
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	94	0.0	94	0.0	0.112	5.7	LOSA	0.6	4.2	0.52	0.59	0.52	23.
6a	R1	All MCs	257	123	257	12.3	0.262	6.6	LOSA	1.7	12.7	0.55	0.60	0.55	35.
6	R2	All MCs	5	0.0	5	0.0	0.262	7.0	LOSA	1.7	12.7	0.55	0.60	0.55	34.
6u	U	All MCs	35	0.0	35	0.0	0.262	8.3	LOSA	1.7	12.7	0.55	0.60	0.55	23.
Appro	ach		391	8.1	391	8.1	0.262	6.5	LOSA	1.7	12.7	0.54	0.60	0.54	33.
North	Appa	irtments (N)												
7	L2	All MCs	2	0.0	2	0.0	0.012	7.4	LOSA	0.1	0.5	0.69	0.63	0.69	34.
8	T1	All MCs	3	0.0	3	0.0	0.012	6.7	LOSA	0.1	0.5	0.69	0.63	0.69	34.
9b	R3	All MCs	2	0.0	2	0.0	0.012	10.5	LOSA	0.1	0.5	0.69	0.63	0.69	37.
9u	U	All MCs	.0	100.	0	100.	0.012	15,3	LOSB	0.1	0.5	0.69	0.63	0.69	36.
				0		0									
Appro	ach		7	1.4	7	1.4	0.012	8.1	LOSA	0.1	0.5	0.69	0.63	0.69	35.
North	West:	Railway	Parade	(NE)											
27b	L3	All MCs	2	0.0	2	0.0	0.542	5.4	LOSA	4.6	32.9	0.53	0.54	0.53	38,
27a	L1	All MCs	341	4.3	341	4.3	0.542	4.6	LOSA	4.6	32.9	0.53	0.54	0.53	37.
29a	R1	All MCs	316	0.0	316	0.0	0.542	7.3	LOSA	4.6	32.9	0.53	0.54	0.53	37.
29u	U	All MCs	1	0.0	1	0.0	0.542	9.6	LOSA	4.6	32.9	0.53	0.54	0.53	41.
Appro	ach		660	2.2	660	2.2	0.542	5.9	LOSA	4.6	32.9	0.53	0.54	0.53	37.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(6)] 2j. 2028 PM Base Burwood Rd and Belmore St -Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	nand	Аr	rival	Deg.	Aver.	Level of	95% Back	Of Queue	Prop.	Eff	Number	Aver
ID		Class	Fi (Total	lows HV j		ows HV j	Sain	Delay	Service	(Veh.	Dist	Oued		of Cycles o Depart	Spee.
-	-	_	veh/h	1/6	veh/h	%	V/c	sec	_	veh	m				km/r
South	: Burv	ood Roa	d (S)												
1	L2	All MCs	89	1.2	89	1.2	0.181	47,7	LOS D	3.5	25,1	0.74	0.69	0.74	26.
2	T1	All MCs	507	5.4	507	5.4	* 0.904	63.4	LOSE	28.5	207.5	0.99	1.09	1.26	20
3	R2	All MCs	58	0.0	58	0.0	0.904	74.8	LOSF	28.5	207.5	1.00	1,12	1.29	26.
Appro	ach		655	4.3	655	4.3	0.904	62.3	LOSE	28.5	207.5	0.95	1.04	1.19	17.
East:	Belmo	ore Street	(E)												
4	L2	All MCs	35	0.0	35	0.0	0.734	46.3	LOS D	11.6	81.7	1.00	0.90	1.09	27.
5	T1	All MCs	203	0.0	203	0.0	0.734	38.7	LOS C	11.6	81.7	1.00	0.90	1.09	21.
6	R2	All MCs	26	4.0	26	4.0	0.734	47.1	LOS D	11.6	81.7	1.00	0.90	1.09	21.
Appro	ach		264	0.4	264	0.4	0.734	40.5	LOS C	11.6	81.7	1.00	0.90	1.09	22.
North	Burw	ood Roa	d'(N)												
7	L2	All MCs	65	1.6	65	1.6	0.138	14.0	LOSA	2.1	15.3	0.32	0.40	0.32	35.
8	T1	All MCs	348	8.5	348	8.5	0.691	16.6	LOSB	6.9	51.1	0.82	0.85	0.83	25.
9	R2	All MCs	87	0.0	87	0.0	* 0.691	25.2	LOSB	6.9	51.1	1.00	1.01	1.02	9.
Appro	oach		501	6.1	501	6.1	0.691	17.8	LOSB	6.9	51.1	0.79	0.82	0.80	23.
West	Belm	ore Stree	t (W)												
10	L2	All MCs	59	1.8	59	1.8	0.177	22.1	LOSB	3.1	21.6	0.80	0.69	0.80	9.
11	T1	All MCs	140	0.0	140		0.886	47.3	LOS D	9.2	64.7	0.95	1.02	1.29	20.
12	R2	All MCs	72	0.0	72	0.0	* 0.886	64.5	LOSE	9.2	64.7	1.00	1.12	1.43	19.
Appro	ach		271	0.4	271	0.4	0.886	46.3	LOS D	9.2	64.7	0.93	0.97	1,22	19.
All Ve	hides		1691	3.6	1691	3.6	0.904	43.1	LOS D	28.5	207.5	0.91	0.94	1.06	20.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK./1PC | Processed: Wednesday, 18 June 2025 1:24:00 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [111(6)] 2k. 2028 PM Base Belmore St and Wynne Ave -Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design

Roundabout

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	and	Αr	rival	Deg.	Aver.	Level of	95% Back	Of Queue	Prop.	Eff	Vumber	Aver
D		Class	F	ows	FI	ows	Satn	Delay	Service			Qued	Stop of	Cycles	Speed
			Total	HV j	[Total	HV j				(Veh.	Dist		Rate to	Depart	
			veh/h	%	veh/h	%	V/C	sec		Veh	m		-		km/n
East.	Belmo	re Street													
5	T1	All MCs	332	0.0	332	0.0	0.567	4.8	LOSA	5,2	36.7	0.43	0.54	0,43	25.3
6	R2	All MCs	398	0.5	398	0.5	0.567	7.3	LOSA	5.2	36.7	0.43	0.54	0.43	25.3
6u	U	All MCs	13	0.0	13	0.0	0.567	8,6	LOSA	5.2	36.7	0.43	0.54	0,43	25.3
Appro	oach		742	0.3	742	0.3	0.567	6.2	LOSA	5.2	36.7	0.43	0.54	0.43	25.3
North	. Wynr	ne Avenu	e												
7	L2	All MCs	117	0.0	117	0,0	0.191	4,5	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
9	R2	All MCs	78	0.0	78	0.0	0.191	6.3	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
9u	U	All MCs	9	0.0	9	0.0	0.191	7.5	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
Appro	oach		204	0.0	204	0.0	0.191	5,3	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
West	Belm	ore Stree	t												
10	L2	All MCs	255	0.0	255	0.0	0.505	9.7	LOSA	3.7	26.2	0.75	0.74	0.83	27.0
11	T1	All MCs	89	0.0	89	0.0	0.505	9.1	LOSA	3.7	26.2	0.75	0.74	0.83	27.0
12u	U	All MCs	11	0.0	11	0.0	0.505	13.0	LOSA	3.7	26.2	0.75	0.74	0.83	27.0
Appro	oach		355	0.0	355	0.0	0.505	9.6	LOSA	3.7	26.2	0.75	0.74	0.83	27.0
All Ve	hides		1301	0.2	1301	0,2	0.567	7.0	LOSA	5.2	36.7	0.49	0.60	0,51	25,7

Site Level of Service (LOS) Method: Detay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD | Licence: NETWORK / 1PC | Processed: Wednesday, 18 June 2025 1:24:00 PM
Project: D;\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [112(6)] 2l. 2028 PM Base Belmore St and Conder St -Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version; 10.0.5,217

New Site

Site Category: Existing Design

Give-Way (Two-Way) Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov ID	Turn	Mov Class	Dem	and lows		rival ows	Deg. Satn	Aver. Delav	Level of Service	95% Back	OfQueu	e Prop. Oued		Number f Cycles	Aver Spee.
		2,000	Total veh/h	HV j			V/c	sec	30/1/130	(Veh. veh	Dist m	9000		Depart	km/r
South	: Con	der Street													
2	T1	All MCs	167	2.5	167	2.5	0.194	1.1	LOSA	0.9	6.3	0.39	0.44	0,39	45.
3	R2	All MCs	123	0.0	123	0.0	0.194	6.2	LOSA	0.9	6.3	0.39	0.44	0.39	45.
Appro	oach		291	1.4	291	1.4	0.194	3.2	NA	0.9	6.3	0.39	0.44	0.39	45.
East:	Belmo	re Street													
4	L2	All MCs	172	0.6	172	0.6	0.328	5.2	LOSA	1.5	10.2	0.42	0.59	0.42	42.5
6	R2	All MCs	157	0.7	157	0.7	0.328	8.1	LOSA	1,5	10.2	0.42	0.59	0.42	31.8
Appro	bach		328	0.6	328	0.6	0.328	6.6	LOSA	1.5	10.2	0.42	0.59	0.42	40.0
North	: Cond	ler Street													
7	L2	All MCs	243	0.0	243	0.0	0.220	4.6	LOSA	0.0	0.0	0.00	0.33	0.00	41.3
8	T1	All MCs	147	1.4	147	1.4	0.220	0.0	LOSA	0.0	0.0	0.00	0.33	0.00	47.
Appro	oach		391	0.5	391	0.5	0.220	2.9	NA	0.0	0.0	0.00	0.33	0.00	45.
All Ve	hides		1009	0.8	1009	0.8	0.328	4.2	NA	1.5	10.2	0.25	0.45	0.25	43.6

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula; SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd. | sidrasolutions.com
Organisation: ROAD DELAY SOLUTIONS PTY LTD. | Licence: NETWORK / 1PC. | Processed: Wednesday, 18 June 2025 1:24:00 PM
Project: D:\Documents\Burwood Place 2024\Stage 1\Sidra\2025 Stages 1 and 2 Burwood Place Models.sipx

Site: [113(6)] 2m. 2028 PM Base Wynne Avenue and Burwood

Place - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network; [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE

1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Burwood Place

Site Category: Base Year
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Den	and	Ą٢	riva)	Deg.	Aver.	Level of	95% Back	Of Queue	е Ргор.	Eff	Number	Aver
D		Class	Fi (Total	lows HV İ		ows HV i	Sain	Delay	Service:	(Veh.	Dist I	Qued		of Cycles o Depart	Spee
			LI CONTRACTOR		veh/h	%	V/c	sec		veh	m				km/r
South	i: Wyn	ne Avenu	ie (S)												
1	L2	All MCs	9	0.0	9	0.0	0.010	13.3	LOSA	0,2	1.3	0.35	0.50	0,35	40.
2	T1	All MCs	3	0.0	3.	0.0	0.010	8.8	LOSA	0.2	1.3	0.35	0.50	0.35	17.
3	R2	All MCs	447	0.0	447	0.0	* 0.476	15,9	LOSB	9.7	67.7	0.53	0.72	0.53	37.
Appro	oach		460	0.0	460	0.0	0.476	15.8	LOSB	9.7	67.7	0.53	0.72	0.53	34.
East:	Emen	ald Squar	e/Burw	ood F	Plaza (E)									
4	L2	All MCs	136	0.0	136	0.0	*0.494	43.6	LOS D	5.7	39.7	0.96	0.79	0.96	23.
5	T1	All MCs	0	0.0	0	0.0	0,001	32.6	LOSC	0.0	0.1	0.86	0.51	0.86	33.
6	R2	All MCs	0	0.0	0	0.0	0.001	40.7	LOSC	0.0	0.1	0.86	0.51	0.86	25.
Appro	oach		136	0.0	136	0.0	0.494	43.6	LOS D	5.7	39.7	0.96	0.79	0.96	23.
North	: Wyn	ne Avenu	e (N)												
7	L2	All MCs	0	0.0	0	0.0	0.004	5.3	LOSA	0.0	0.1	0.04	0.04	0.04	47.
3	T1	All MCs	5	0.0	5	0.0	0.004	0.6	LOSA	0.0	0.1	0.04	0.04	0.04	45.
9	R2	All MCs	0	0.0	0	0.0	0.000	5.2	LOSA	0.0	0.0	0.04	0.53	0.04	42.
Appro	oach		5	0.0	5	0.0	0.004	0.8	LOSA	0.0	0.1	0.04	0.05	0.04	45.
Nest	Burw	ood Gran	id (VV)												
10	L2	All MCs	0	0.0	0	0,0	0.000	38.7	LOS C	0.0	0.0	0.86	0.52	0.86	24.
11	T1	All MCs	0	0.0	0	0,0	0.066	34.0	LOSC	0.5	3.6	0.92	0.68	0.92	31.
12	R2	All MCs	13	0.0	13	0.0	0.066	44.5	LOS D	0,5	3.6	0.92	0.68	0.92	22.
Appro	oach		13	0.0	13	0.0	0.066	44.4	LOS D	0.5	3,6	0.92	0.68	0.92	22.
All Ve	hides		614	0.0	614	0.0	0.494	22.5	LOSB	9.7	67.7	0.63	0.73	0.63	31.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [114 (4)] 1n. 2028 PM Base Belmore St and Burwood Place Exit - Copy - Copy (2025 PM EXISTING 17:30-18:30)
Network: [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site Site Category: (None) Give-Way (Two-Way)

Mov ID	Turn	Mov Class	Dem	nand lows		rival ows	Deg. Satn	Aver. Delav	Level of Service	95% Back	OfQueu	e Prop. Oued		Number Cycles	Aver Spee J
		1	(Total					~m)	50,0100	(Veh.	Dist	2000		Depart	
			veh/h	%	veh/h	%	V/C	sec		Veh	m		-		km/n
East:	Belmo	re Street													
5	T1	All MCs	332	0.0	332	0.0	0.170	0,0	LOSA	0.0	0.0	0.00	0.00	0,00	59.9
Appro	oach		332	0.0	332	0.0	0.170	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	Burw	ood Place	Exit												
7	L2	All MCs	81	0.0	81	0.0	0.060	6.2	LOSA	0.2	1.7	0.30	0.57	0.30	44.2
9	R2	All MCs	123	0.0	123	0.0	0.150	8.0	LOSA	0.5	3.8	0.46	0.74	0.46	41.9
Appro	oach		204	0.0	204	0.0	0.150	7.3	LOSA	0,5	3.8	0.40	0.67	0.40	42.8
West	: Belm	ore Street													
11	T1	All MCs	213	0.0	213	0.0	0.109	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	oach		213	0.0	213	0.0	0.109	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	hides		748	0.0	748	0.0	0.170	2.0	NA	0.5	3.8	0.11	0.18	0.11	49.0

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any initial Queued Demand and Upstream Capacity Constraint effects.

Site: [1 (3)] 2028 PM Railway Pde Access - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(8)] 2028 PM Stage 1 Complete (2028 STAGE 1 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Left-In Left-Out Site Category: (None) Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov ID	Turn	Mov Class	Den:	and ows		nvai ows	Deg. Satn	Aver. Delav	Lavel of Service	95% Back	Of Queue	Prop. Oued		Vumber Cycles	Aver Speed
		2,000		HV j	Total Veh/n		V/c	sec	2011120	(Veh. Veh	Dist m	GCCC.		Depart	km/n
South	: Deve	elopment	Access												
1	L2	All MCs	218	1.9	218	1.9	0.126	5,8	LOSA	0.5	3.5	0.00	0.53	0,00	51.0
Appro	oach		218	1.9	218	1.9	0.126	5.8	NA	0.5	3.5	0.00	0.53	0.00	51.0
East.	Railwa	ay Parade													
2	L2	All MCs	260	1.6	260	1.6	0.205	5.2	LOSA	0.0	0.0	0.00	0.37	0.00	52.0
3	T1	All MCs	524	0,0	524	0.0	0.205	0.0	LOSA	0.0	0.0	0.00	0.09	0.00	52.2
Appro	oach		784	0.5	784	0,5	0.205	1.7	NA	0,0	0.0	0.00	0.18	0.00	52.1
West	Railw	ay Parad	e												
4	T.1	All MCs	480	2.2	480	2.2	0.107	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	oach		480	2.2	480	2.2	0.107	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	hides		1482	1.3	1482	1.3	0.205	1.8	NA	0.5	3.5	0.00	0.17	0.00	52.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

2030 AM Peak Stage 2 Completed

MOVEMENT SUMMARY

Site: [107(7)] 1g. 2030 AM Base Railway Pde and Conder St - Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(9)] 2030 AM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Railway Parade and Conder Street Site Category: Existing Design Roundabout

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Turn	Mov	Dem	and	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queu	e Pron	Fff_h	Jumber	Ave
ID	TGITT	Class		lows		ows	Satn	Delay	Service	55 % DBG	. Or Gucu	Qued		Cycles	Spee
		01000	[Total				550	Delay	0011100	[Veh.	Dist 1	ajaca	Rate to		Орос
			veh/h			%	V/c	sec		veh	m			ээрэ	km/
South	: Con	der Stree													
1a	L1	All MCs	296	0.4	296	0.4	0.508	5.3	LOSA	3.9	27.6	0.72	0.65	0.75	36.
2	T1	All MCs	2	0.0	2	0.0	0.508	5.6	LOSA	3.9	27.6	0.72	0.65	0.75	35.
3	R2	All MCs	160	2.0	160	2.0	0.508	8.9	LOSA	3.9	27.6	0.72	0.65	0.75	23.
3u	U	All MCs	15	0.0	15	0.0	0.508	10.1	LOSA	3.9	27.6	0.72	0.65	0.75	23.
Appro	ach		473	0.9	473	0.9	0.508	6.7	LOSA	3.9	27.6	0.72	0.65	0.75	33.
East:	Railw	ay Parad	e (E)												
4	L2	All MCs	165	1.9	165	1.9	0.164	4.8	LOSA	0.9	6.6	0.44	0.53	0.44	28.
6a	R1	All MCs	275	7.7	275	7.7	0.294	5.9	LOSA	1.9	14.7	0.47	0.57	0.47	35.
6	R2	All MCs	1	0.0	1	0.0	0.294	6.4	LOSA	1.9	14.7	0.47	0.57	0.47	35.
6u	U	All MCs	93	17.0	93	17.0	0.294	8.0	LOSA	1.9	14.7	0.47	0.57	0.47	26.
Appro	ach		534	7.5	534	7.5	0.294	6.0	LOSA	1.9	14.7	0.46	0.56	0.46	33.
North	: Appa	rtments ((N)												
7	L2	All MCs	2	0.0	2	0.0	0.020	7.2	LOSA	0.1	0.7	0.67	0.67	0.67	33.
8	T1	All MCs	3	0.0	3	0.0	0.020	6.4	LOSA	0.1	0.7	0.67	0.67	0.67	33.
9b	R3	All MCs	7	0.0	7	0.0	0.020	10.3	LOSA	0.1	0.7	0.67	0.67	0.67	36.
9u	U	All MCs	0	0.0	0	0.0	0.020	10.9	LOSA	0.1	0.7	0.67	0.67	0.67	36.
Appro	ach		13	0.0	13	0.0	0.020	8.8	LOSA	0.1	0.7	0.67	0.67	0.67	35.
North'	West:	Railway	Parade	(NE))										
27b	L3	All MCs	2	0.0	2	0.0	0.488	6.3	LOSA	3.6	26.5	0.63	0.60	0.63	38.
27a	L1	All MCs	302	7.7	302	7.7	0.488	5.6	LOSA	3.6	26.5	0.63	0.60	0.63	37.
29a	R1	All MCs		2.8	187		0.488	8.3	LOSA	3.6	26.5	0.63	0.60	0.63	37.
29u	U	All MCs	3	0.0	3	0.0	0.488	10.5	LOSA	3.6	26.5	0.63	0.60	0.63	40.
Appro	ach		495	5.7	495	5.7	0.488	6.6	LOSA	3.6	26.5	0.63	0.60	0.63	37.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(7)] 1j. 2030 AM Base Burwood Rd and Belmore St -

Copy - Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(9)] 2030 AM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

	Turn			nand		rival	Deg.	Aver.	Lavel of	95% Back	Of Queue			Number	Aver
D		Class		lows HV j	Fi [Total]	ows HV j	Satn	Delay	Service	(Veh.	Dist	Qued		of Cycles o Depart	Spee
			veh/h	iý _o	veh/h	%	V/C	sec		veh	m			-	km/r
South	: Burv	vood Roa	d (S)												
1	L2	All MCs	79	0.0	79	0.0	0.209	44.9	LOS D	4.0	28.4	0.71	0.65	0.71	27.
2	T1	All MCs	645	5.1	645	5.1	* 1.044	113.6	LOSF	48.7	355.0	0.97	1.58	1.80	13.
3	R2	All MCs	62	1.7	62	1.7	1.044	128,6	LOSF	48.7	355.0	1.00	1.68	1.93	18.
Appro	ach		786	4.3	786	4.3	1.044	107.9	LOSF	48.7	355.0	0.95	1.49	1.70	12.
East:	Belmo	ore Street	(E)												
4	L2	All MCs	39	5.4	39	5,4	0.633	43.8	LOS D	7.0	49.4	0.99	0.83	1.03	27
5	T1	All MCs	104	0.0	104	0.0	0.633	36.9	LOSC	7.0	49.4	0.99	0.83	1.03	21.
6	R2	All MCs	26	0.0	26	0.0	0.633	47.9	LOS D	7.0	49.4	0.99	0.83	1.03	21.
Appro	ach		169	1.2	169	1.2	0.633	40.2	LOSC	7.0	49.4	0.99	0.83	1.03	23.
North	Burw	ood Roa	d'(N)												
7	L2	All MCs	69	1.5	69	1.5	0.101	7.5	LOSA	1.2	8.7	0.26	0.41	0.26	35.
8	T1	All MCs	359	10.3	359	10.3	0.507	5.8	LOSA	4.5	34.0	0.61	0.94	0.61	27
9	R2	All MCs	32	0.0	32	0.0	* 0.507	14.9	LOSB	4.5	34.0	0.67	1.03	0.67	12.
Appro	ach		460	8.2	460	8.2	0.507	6.7	LOSA	4.5	34.0	0.56	0.87	0.56	27.
West	Belm	ore Stree	t (W)												
10	L2	All MCs	37	0.0	37	0.0	0.163	39.9	LOS C	1.6	10.9	0.92	0.71	0.92	7.
11	T1	All MCs	174	0.0	174	0,0	* 0.816	42.5	LOSC	9.8	69.6	1.00	1.01	1.24	21.
12	R2	All MCs	47	6.7	47	6.7	0.816	52.9	LOS D	9.8	69.6	1.00	1.01	1.25	21.
Appro	ach		258	1.2	258	1.2	0.816	44.0	LOS D	9.8	69.6	0.99	0.97	1.20	20.
All Ve	hides		1674	4.6	1674	4.6	1.044	63.4	LOSE	48.7	355.0	0.85	1.17	1.24	17.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements,

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [111(7)] 1k, 2030 AM Base Belmore St and Wynne Ave -Copy - Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(9)] 2030 AM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: Existing Design Roundabout

Network Scenario: 1 | Local Volumes Site Scena

Site Scenario: 1 | Local Volumes

		ovemen													
Mav	Tum	Mov	Dem			nval	Deg	Aver	Level of	95% Back	Of Queu			Number	Aver
D.		Class		lows		ows	Sam	Delay	Service			Qued		Cycles	Speed
			[Total) Veh	Dist J		Ratero	Depart	
-	-	_	veh/h	%	veh/h	%	V/C	Sec	_	veh	iii	_			km/
East:	Belma	ore Street	t												
5	T1	All MCs	204	0.0	204	0.0	0.311	4.4	LOSA	2.0	14.2	0.28	0.54	0.28	26.5
6	R2	All MCs	186	0.0	186	0.0	0.311	6.9	LOSA	2.0	14.2	0.28	0.54	0.28	26.5
6u	U	All MCs	11	0.0	11	0.0	0.311	8.2	LOSA	2.0	14.2	0.28	0.54	0,28	26.5
Appro	bach		401	0.0	401	0.0	0.311	5.7	LOSA	2.0	14.2	0.28	0.54	0.28	26.5
North	: Wyn	ne Avenu	ie												
7	L2	All MCs	120	3.5	120	3.5	0.185	4.5	LOSA	1.0	7.1	0.31	0.57	0.31	22.3
9	R2	All MCs	73	0.0	73	0.0	0.185	6.3	LOSA	1.0	7.1	0.31	0.57	0.31	22.
9u	U	All MCs	3	0.0	3	0.0	0.185	7.5	LOSA	1.0	7.1	0.31	0.57	0.31	22.
Appro	oach		196	2.2	196	2.2	0,185	5.2	LOSA	1.0	7.1	0.31	0.57	0.31	22.
West	Belm	ore Stree	et												
10	L2	All MCs	152	0.0	152	0,0	0.286	6.2	LOSA	1.7	11.7	0.47	0.56	0.47	32.6
11	T1	All MCs	98	2.2	98	2.2	0.286	5.6	LOSA	1.7	11.7	0.47	0.56	0.47	32.6
12u	U	All MCs	4	0.0	4	0.0	0.286	9.5	LOSA	1.7	11.7	0.47	0.56	0.47	32.6
Appro	oach		254	0.8	254	8.0	0.286	6.0	LOSA	1.7	11.7	0.47	0.56	0.47	32.6
All Ve	ehides	D.	851	0.7	851	0.7	0.311	5.7	LOSA	2.0	14.2	0.35	0.55	0.35	28.

Site Level of Service (LOS) Method: Delay (NSW), Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [112(7)] 1I. 2030 AM Base Belmore St and Conder St -Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(9)] 2030 AM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: Existing Design Give-Way (Two-Way) Network Scenario: 1 | Local Volumes

etwork Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mav	Turn	Mov	Flam	and	Ac	rival	Deg	AVEC	Level of	95% Bao	Of Care	a Pron	Eff. I	vumber	Aver
ID	19(1)	Class		lows		OWS	Satn	Delay	Service	2070 000	Of Guen	Qued		Cycles	Speed
114		C1055			[Total		pani	Detay	26/1/26	[Veh	Dist]	Chien		Depart	oheer
			veh/h		veh/h	%	v/c:	sec		veh	WI CHANGE		1100210	Copon	kmvi
Sout	n: Con	der Stree	t												
2	T1.	All MCs	173	0.0	173	0.0	0.213	2.0	LOSA	1.0	7.2	0.36	0.49	0.36	44.9
3	R2	All MCs	162	0.0	162	0.0	0.213	5.7	LOSA	1.0	7.2	0.36	0.49	0.36	44.9
Appn	oach		335	0.0	335	0.0	0.213	3.8	NA	1.0	7.2	0.36	0.49	0.36	44.9
East	Belmo	ore Street													
4	L2	All MCs	184	0.0	184	0.0	0.269	5.2	LOSA	1.2	8.1	0.38	0.58	0.38	42.8
6	R2	All MCs	105	0.0	105	0.0	0.269	7.8	LOSA	1.2	8.1	0.38	0.58	0.38	32.6
Appr	oach		289	0.0	289	0.0	0.269	6.1	LOSA	1,2	8.1	0.38	0.58	0.38	41.2
North	Con	der Street													
7	1.2	All MCs	120	1.8	120	1.8	0.159	4.6	LOSA	0.0	0.0	0.00	0.23	0.00	43.5
8	T1	All MCs	160	3.9	160	3.9	0.159	0.0	LOSA	0.0	0.0	0.00	0.23	0.00	48.0
Appr	oach		280	3.0	280	3.0	0.159	2.0	NA	0.0	0.0	0.00	0.23	0.00	47.2
All Ve	hides	6	904	0.9	904	0.9	0.269	4.0	NA	1.2	8.1	0.25	0.44	0.25	44.3

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Amval Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [113(7)] 1m. 2030 AM Base Wynne Avenue and Burwood Place - Copy - Copy - Copy (2025 AM EXISTING 8:00-9:00) Network: [N101(9)] 2030 AM Stage 2 Complete (2030 STAGE

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Burwood Place

Site Category: Base Year
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85.0 seconds (Network User-Given Cycle Time) Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Tum	Mov		brian		пуаі	Deg	Aver	Level ur	95% Bad	Of Queue			Number	Aver
ID.		Class		HV [[Total	ows HV]	Sam	Delay	Service) Veh	Dist J	Qued		Oycles Depart	Speco
=	-	_	veh/h	%	veh/h	%	v/c	seq	_	veh	m	_	_		km/h
South	ı: Wyn	ne Aveni	ue (S)												
1	L2	All MCs	11	0.0	-11	0.0	0.011	9.5	LOSA	0.2	1.4	0.35	0.53	0.35	39.7
2	T1	All MCs	2	95.2	2	95.2	0.011	5.1	LOSA	0.2	1.4	0.35	0.53	0.35	17.0
3	R2	All MCs	280	0.0	280	0.0	* 0,295	10.8	LOSA	4.8	33.9	0.45	0.68	0.45	38.4
Appro	oach		293	0.7	293	0.7	0.295	10.8	LOSA	4.8	33.9	0.44	0.68	0.44	37.9
East:	Emen	ald Squa	re/Burw	ood F	laza (E)									
4	L2	All MCs	31	0.0	31	0.0	₹ 0.118	39.7	LOS C	1.1	7.9	0.90	0.71	0.90	24.2
5	T1	All MCs	0	0.0	0	0.0	0.001	32.2	LOSC	0.0	0.1	0.86	0.51	0.86	34.0
6	R2	All MCs	0	0.0	0	0.0	0.001	36.8	LOSC	0.0	0.1	0.86	0.51	0.86	25.9
Appr	oach		31	0.0	31	0.0	0.118	39.7	LOS C	1.1	7.9	0.90	0.71	0.90	24.2
North	: Wyni	ne Avent	ie (N)												
7	L2	All MCs	0	0.0	0	0,0	0.007	7.1	LOSA	0.0	0.4	0.16	0.12	0.16	43.6
8	T1	All MCs	5	98.0	5	98.0	0.007	2.1	LOSA	0.0	0.4	0.16	0.12	0.16	29.7
9	R2	All MCs	0	0.0	0	0.0	0.000	5.6	LOSA	0.0	0.0	0.07	0.53	0.07	42.6
Appr	oach		6	94.3	6	94.3	0.007	2.3	LOSA	0.0	0.4	0.16	0.13	0.16	31.7
West	Burw	ood Gran	nd (W)												
10	L2	All MCs	0	0.0	0	0.0	0.001	37.7	LOS C	0.0	0.1	0.86	0.50	0.86	26.0
11	T1	All MCs	0	0.0	0	0.0	0.001	31.1	LOSC	0.0	0.1	0.86	0.50	0.86	34.0
12	R2	All MCs	3	0.0	3	0.0	0.013	38.7	LOSC	0.1	0.8	0.88	0.63	0.88	24.4
Appr	oach		3	0.0	3	0.0	0.013	38.4	LOS C	0.1	8,0	0.88	0.62	0,88	24,9
All Ve	ehides		332	2.2	332	2.2	0.295	13.6	LOSA	4.8	33.9	0.49	0.67	0.49	35.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D),

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

V Site: [114(4)] 1n. 2030 AM Base Belmore St and Burwood Place Exit - Copy - Copy - Copy (2025 AM EXISTING 8:00-9:00) Network: [N101(9)] 2030 AM Stage 2 Complete (2030 STAGE 2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: (None) Give-Way (Two-Way) Network Scenario: 1 | Local Volumes

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov ID	Tum	Mov Class		iana lows		nval ows	Deg Satn	Aver Delay	Level of Service	95% Back	Of Queu	e Frop Oued		Number Cycles	Ave Speed
			Total	HV	Total	HV				(Veh	Dist			Depart	
			veh/h	14/4	veh/it	96	Wc.	sec	<u> </u>	∨eh	m		-		km/h
East	Belme	ore Street													
5	T1	All MCs	220	0.0	220	0.0	0.113	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appr	oach		220	0.0	220	0.0	0.113	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	: Burw	ood Plac	e Exit												
7	12	All MCs	65	0.0	65	0.0	0.053	6.6	LOSA	0.2	1.4	0.36	0.60	0.36	43.8
9	R2	All MCs	83	0.0	83	0.0	0.102	8.0	LOSA	0.3	2.4	0.45	0.73	0.45	42,0
Appr	oach		148	0.0	148	0.0	0.102	7.3	LOSA	0.3	2.4	0.41	0.67	0.41	42.8
West	Belm	ore Stree	t												
11	T1	All MCs	304	0,0	304	0.0	0.156	0.0	LOSA	0,0	0.0	0.00	0.00	0.00	59.9
Appr	oach		304	0,0	304	0.0	0.156	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
Ali V	ehicles		673	0.0	673	0.0	0.156	1.6	NA	0.3	2.4	0.09	0.15	0.09	50.1

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data fah)

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity. Constraint effects.

Site: [1 (5)] 2030 AM Railway Pde Access - Copy - Copy (2025 AM EXISTING 8:00-9:00)

Network: [N101(9)] 2030 AM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Left-In Left-Out Site Category: (None) Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehic	de M	ovement	Perfo	rma	nce										
Mov ID	Tum	Mov Class	Derr Fl	and ows		rival lows	Deg Sam	Aver Delay	Lever at Service		ol Queu	e Prop. Oued		Number Cycles	Aver Speed
			(Total veh/h		[Total veh/h		v/c	seq		l Veh veh	Dist J m		Raleto	Depart	km/h
South	: Dev	elopment	Access												
1	L2	All MCs	214	2.0	214	2.0	0.123	5.8	LOSA	0.5	3.4	0.00	0.53	0.00	51.0
Appro	ach		214	2.0	214	2.0	0.123	5.8	NA	0.5	3.4	0.00	0,53	0.00	51.0
East:	Railw	ay Parade	2												
2	L2	All MCs	256	1.6	256	1.6	0.147	5.3	LOSA	0.5	3.6	0.00	0,53	0.00	50.2
3	T1	All MCs	421	0.0	421	0.0	0.108	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach		677	0.6	677	0.6	0.147	2.0	NA	0.5	3.6	0.00	0,20	0.00	51.8
West:	Railw	ay Parad	e												
4	T1	All MCs	116	9.1	116	9.1	0.027	0.0	LOSA	0.0	0.0	0.00	0,00	0.00	60.0
Appro	ach		116	9.1	116	9.1	0.027	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	hicles		1006	1.9	1006	1.9	0.147	2.6	NA	0.5	3.6	0.00	0.25	0.00	51.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

2030 PM Peak Stage 2 Completed

MOVEMENT SUMMARY

Site: [105(8)] 2e. 2030 PM Base Burwood Rd and Railway
Parade - Copy - Copy - Copy (2025 PM EXISTING 17:30-18:30)
Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE 2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Mov	Tum	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95% Back	Of Queu	e Prop.	Eff.	Number	Aver
ID		Class		lows		ows	Satn	Delay	Service			Qued		Cycles	Speed
			[Total	HVI	Total	HV]				[Veh.	Dist]			Depart	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/l
South	: Burv	vood Roa	d (S)												
1	L2	All MCs	89	1.2	89	1.2	0.631	24.6	LOS B	8.6	61.9	0.59	0.56	0.59	20.
2	T1	All MCs	624	4.4	624	4.4	0.631	17.5	LOS B	8.9	65.0	0.59	0.53	0.59	23.
3	R2	All MCs	1	100. 0	1	100.	* 0.631	33.0	LOS C	8.9	65.0	0.58	0.51	0.58	29.
Appro	oach		715	4.1	715	4.1	0.631	18.4	LOS B	8.9	65.0	0.59	0.53	0.59	20.
East:	Railw	ay Parade	e (E)												
4	L2	All MCs	63	0.0	63	0.0	0.235	48.6	LOS D	3.1	21.5	0.89	0.73	0.89	16.
5	T1	All MCs	273	2.3	273	2.3	* 0.628	43.0	LOS D	10.3	73.6	0.95	0.79	0.95	17.
Appro	oach		336	1.9	336	1.9	0.628	44.0	LOS D	10.3	73.6	0.94	0.78	0.94	15.
North	: Burv	ood Roa	d (N)												
7	L2	All MCs	40	2.6	40	2.6	0.127	13.5	LOSA	2.6	19.1	0.46	0.45	0.46	30.
8	T1	All MCs	323	9.1	323	9.1	0.594	9.3	LOSA	7.0	54.6	0.70	0.86	0.70	11.
9	R2	All MCs	115	20.2	115	20.2	* 0.594	17.5	LOS B	7.0	54.6	0.80	1.03	0.80	10.
Appro	oach		478	11.2	478	11.2	0.594	11.6	LOSA	7.0	54.6	0.70	0.86	0.70	13.
West	Railw	ay Parad	e (W)												
10	L2	All MCs	173	14.0	173	14.0	0.299	30.1	LOSC	6.2	48.3	0.85	0.77	0.85	15.
11	T1	All MCs	232	3.2	232	3.2	0.520	32.6	LOS C	9.0	64.7	0.92	0.77	0.92	22.
Appro	oach		404	7.8	404	7.8	0.520	31.5	LOS C	9.0	64.7	0.89	0.77	0.89	20.
All Ve	hicles		1933	6.3	1933	6.3	0.631	23.9	LOSB	10.3	73.6	0.74	0.71	0.74	17.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [106(8)] 2f. 2030 PM Base Railway Pde and Wynne Ave -

Copy - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category, Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time) Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

		ovemen	t Pent	orma											
Mov		Mov		nand		nval	Cag	Aver	Level of	95% Bad	CI Queli			Number	Ave
ID		Class		lows		ows	Satn	Delay	Service		300	Oted		f Cycles	Spee:
					Total) Veh	Dist.)		Raleto	Depart	
-	_	_	vehilh	%	veh/n	96	WC.	sec		veh	m				Km/
South	n: Wyn	ne Avenu	e (S)												
1	L2	All MCs	. 0	0.0	0	0.0	0.000	43.0	LOS D	0.0	0.0	0.99	0.52	0.99	6.
2	T1	All MCs	0	0.0	0	0.0	0.001	29.1	LOSIC	0.0	0.0	0.78	0.47	0.78	24.
3	R2	All MCs	- 0	0.0	0	0.0	0.001	35.9	LOSIC	0.0	0.0	0.78	0.47	0.78	8.2
Appro	oach		0	0.0	0	0.0	0.001	36.0	LOS C	0.0	0.0	0.85	0.49	0.85	15.
East:	Railwa	ay Parade	e (E)												
4	L2	All MCs	144	0.0	144	0.0	0.146	19.3	LOSB	4.6	31.9	0.77	0.58	0.77	17.
5	T1	All MCs	6	100.	6	100.	0.008	3.2	LOSA	0.1	0.7	0.22	0.15	0.22	33.
				0		0									
Appro	oach		151	4.2	151	4.2	0.146	18.6	LOSB	4.6	31.9	0.75	0.56	0.75	18.
North	: Burw	ood Cen	tral Car	Park	(N)										
7	L2	All MCs	19	0.0	19	0.0	*0.070	39.2	LOSC	0.7	5.1	0.88	0.68	0.88	21.
8	T1	All MCs	0	0.0	0	0.0	0.000	30.9	LOS C	0.0	0.0	0.82	0.43	0.82	24.
Appro	oach		19	0.0	19	0.0	0.070	39.1	LOS C	0.7	5.1	0.88	0.68	0.88	21.
West	Railw	ray Parad	e (W)												
10	L2	All MCs	20	0.0	20	0.0	0.151	14.2	LOSA	2.9	21.7	0.42	0.38	0.42	35.
11	T1	All MCs	324	10.4	324	10.4	0.151	5.9	LOSA	2.9	21.7	0.40	0.35	0.40	26.
12	R2	All MCs	0	100.	0	100.	≠0.151	17.1	LOSB	2.8	21.0	0.38	0.32	0.38	27.
				0		0						-			
Appro	oach		344	9.8	344	9.8	0.151	6.3	LOSA	2.9	21.7	0.40	0.35	0.40	28.
Ali Ve	hicles		514	7.8	514	7.8	0.151	11.2	LOSA	4.6	31.9	0.52	0.43	0.52	23.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [107(8)] 2g. 2030 PM Base Railway Pde and Conder St -Copy - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Railway Parade and Conder Street Site Category: Existing Design Roundabout

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Tum	Mov	Derr			rival	Deg	Aver	Level of	95% Back	Of Queue	e Prop.		Number	Aver
ID.		Class		ows		lows	Sam	Delay	Service		-	Qued		Cycles	Speed
			[Total) Ven	Dist J		Raleto	Depart	
		4 1/2/2 C.E.	veh/h	%	veh/h	%	V/C	seq	_	veh	m.	_	_	_	km/
South	: Con	der Stree	t(S)						V 30.5						
1a	L1	All MCs	211		211	1.0	0.334	5.3	LOSA	2.2	15.4	0.59	0.60	0.59	40.3
2	T1	All MCs		0.0		0.0	0.334	5.6	LOSA	2.2	15.4	0.59	0.60	0.59	37.6
3	R2	All MCs		3.1	103	3,1	0.334	9.0	LOSA	2.2	15.4	0.59	0,60	0.59	33.4
3u	U	All MCs	12	0.0	12	0.0	0.334	10.4	LOSA	2.2	15.4	0.59	0,60	0.59	33.4
Appro	ach		328	1.6	328	1.6	0.334	6.6	LOSA	2,2	15.4	0,59	0,60	0,59	38.8
East	Railw	ay Parad	e (E)												
4	L2	All MCs	94	0.0	94	0.0	0.112	5.7	LOSA	0.6	4.2	0.52	0.59	0.52	27.2
6a	R1	All MCs	257	12,3	257	12.3	0.262	6.6	LOSA	1.7	12.7	0.55	0.60	0.55	35.6
6	R2	All MCs	5	0.0	5	0.0	0.262	7.0	LOSA	1.7	12.7	0.55	0.60	0.55	35.0
6u	U	All MCs	35	0.0	35	0.0	0.262	8.3	LOSA	1.7	12.7	0.55	0.60	0.55	26.2
Appro	ach		391	8.1	391	8.1	0.262	6.5	LOSA	1.7	12.7	0.54	0.60	0.54	34.
North	Appa	rtments i	(N)												
7	L2	All MCs	2	0.0	2	0.0	0.012	7.4	LOSA	0.1	0.5	0.69	0.63	0.69	34.
8	T1	All MCs	3	0.0	3	0.0	0.012	6.7	LOSA	0.1	0.5	0.69	0.63	0.69	34.
9b	R3	All MCs	2	0.0	2	0.0	0.012	10.5	LOSA	0.1	0.5	0.69	0.63	0.69	37.2
9u	U	All MCs	0	100.	0	100.	0.012	15.3	LOSB	0.1	0.5	0.69	0.63	0.69	36.0
				0		0									
Appro	ach		7	1.4	7	1.4	0.012	8.1	LOSA	0.1	0.5	0.69	0.63	0.69	35.3
North	West	Railway	Parade	(NE)											
27ь	L3	All MCs	2	0.0	2	0.0	0.542	5.4	LOSA	4.6	32.9	0.53	0.54	0.53	38.6
27a	L1	All MCs	341	4.3	341	4.3	0.542	4.6	LOSA	4.6	32.9	0.53	0.54	0.53	37.9
29a	R1	All MCs	316	0.0	316		0,542	7.3	LOSA	4.6	32.9	0.53	0.54	0.53	37.9
29u	U	All MCs	- 1	0.0	1	0.0	0.542	9.6	LOSA	4.6	32.9	0.53	0.54	0.53	41.
Appro	ach		660	2.2	660	2.2	0.542	5.9	LOSA	4.6	32.9	0.53	0.54	0.53	37.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [110(8)] 2j. 2030 PM Base Burwood Rd and Belmore St -

Copy - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: Existing Design
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

		ovemen													
Mov	Tum	Mov	Dan			rival	Deg	Aver	Level ul	95% Back	Of Queue			Number	Ave
ID.		Class		lows		ows	Sam	Delay	Service		200	Qued		Cycles	Spee
					[Total) Veh	Dist J		Raleto	Depart	
	_	CONTRACT.	veh/h	%	veh/h	%	v/c	Sec	_	veh	m	_		_	km/
South	1: Bury	ood Roa	d(S)												
1	L2	All MCs	89	1.2	89	1.2	0.160	46.7	LOS D	3.0	21.1	0.75	0.70	0.75	25
2	T1	All MCs	402	6.8	402	6.8	0.800	50.9	LOS D	19.8	145.3	0.96	0.92	1.06	23
3	R2	All MCs	58	0.0	58	0.0	*0,800	60.2	LOSE	19.8	145.3	0.96	0.93	1.07	29.
Appro	oach		549	5.2	549	5.2	0.800	51.2	LOS D	19.8	145.3	0.92	0.89	1,01	19
East:	Belmo	re Street	(E)												
4	L2	All MCs	35	0.0	35	0.0	0.676	43.4	LOS D	11.1	78.1	0.98	0.84	1.01	28
5	T1	All MCs	203	0.0	203	0.0	0.676	35.9	LOSC	11.1	78.1	0.98	0.84	1.01	22
6	R2	All MCs	26	4.0	26	4.0	0.676	44.3	LOS D	11.1	78.1	0.98	0.84	1.01	22
Appro	oach		264	0.4	264	0.4	0.676	37.7	LOS C	11.1	78.1	0.98	0.84	1.01	23
North	Burw	ood Roa	d (N)												
7	L2	All MCs	65	1.6	65	1.6	0.128	12.6	LOSA	1.9	14.1	0.33	0.42	0.33	35
8	T1	All MCs	348	8.5	348	8.5	0.640	15.4	LOSB	7.7	57.2	0.84	0.87	0.84	25
9	R2	All MCs	87	0.0	87	0.0	* 0.640	16.9	LOSB	7.7	57.2	0.98	1.00	0.98	9
Appro	oach		501	6.1	501	6.1	0,640	15.3	LOSB	7.7	57.2	08.0	0.84	0.80	23
West	Belm	ore Stree	t (W)												
10	L2	All MCs	59	1.8	59	1.8	0.157	21.0	LOSB	2.8	20.0	0.77	0.68	0.77	10
11	T1	All MCs	140	0.0	140	0.0	0.784	41.2	LOSC	8.6	60.4	0.95	0.91	1.12	22
12	R2	All MCs	72	0.0	72	0.0	* 0.784	56.5	LOSE	8.6	60.4	1.00	0.97	1.21	21
Appro	oach		271	0.4	271	0.4	0.784	40.9	LOS C	8.6	60.4	0.93	0.88	1.07	20
All Ve	ehides		1585	3,9	1585	3.9	0.800	35.8	LOSC	19.8	145.3	0.89	0.86	0.95	21

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D),

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Site: [111(8)] 2k. 2030 PM Base Belmore St and Wynne Ave-Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE

2 COMPLETE

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: Existing Design Roundabout

Network Scenario: 1 | Local Volumes

Site Scenario: 1 | Local Volumes

Moy	Tum	Mov	Dem	and	Ar	rival	Deg	Aver	Level of	95% Back	Of Queu	e Prop	Eff	Number	Aver
ID		Class		ows			Satn	Dalay	Service			Qued	Stop of	Cycles	Speed
			[Total	HV]	Total	HV [[Veht.	Dist]		Rate to	Depart	
=		_	veh/n	%	veh/h	%	V/c	SEC		veh	m		-31		km/h
East	Belmo	re Street													
5	T1	All MCs	332	0.0	332	0.0	0.567	4.8	LOSA	5.2	36.7	0.43	0.54	0.43	25.3
6	R2	All MCs	398	0.5	398	0.5	0.567	7.3	LOSA	5.2	36.7	0.43	0.54	0.43	25.3
6u	U	All MCs	13	0.0	13	0.0	0.567	8,6	LOSA	5.2	36.7	0,43	0.54	0.43	25,3
Appro	ach		742	0.3	742	0.3	0.567	6.2	LOSA	5.2	36.7	0.43	0.54	0.43	25.3
North	Wyn	ne Avenu	е												
7	L2	All MCs	117	0.0	117	0,0	0.191	4.5	LOSA	1.0	6,8	0.26	0.59	0.26	22.5
9	R2	All MCs	78	0.0	78	0.0	0.191	6.3	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
9u	U	All MCs	9	0.0	9	0.0	0.191	7.5	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
Appro	ach		204	0.0	204	0.0	0.191	5.3	LOSA	1.0	6.8	0.26	0.59	0.26	22.5
West:	Belm	ore Stree	t												
10	L2	All MCs	255	0.0	255	0.0	0.505	9.7	LOSA	3.7	26.2	0.75	0.74	0.83	27.0
11	T1	All MCs	89	0.0	89	0.0	0.505	9.1	LOSA	3.7	26.2	0.75	0.74	0.83	27.0
12u	U	All MCs	11	0.0	11	0.0	0.505	13.0	LOSA	3.7	26.2	0.75	0.74	0.83	27.0
Appro	ach		355	0.0	355	0.0	0.505	9.6	LOSA	3.7	26,2	0.75	0.74	0.83	27.0
All Ve	hides		1301	0.2	1301	0.2	0.567	7.0	LOSA	5.2	36.7	0.49	0.60	0.51	25.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [112(8)] 2I. 2030 PM Base Belmore St and Conder St − Copy - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE

2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: Existing Design Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem	end lows		rival lows	Deg. Sam	Aver Delay	Level of Service	95% Bad	c Of Quaus	Prop. Qued	Eff.	Number of Cycles	Aver
B			Total veh/h	2000	/ Total veh/h	HV J ‰	V/c-	sec		(Veh veh	Dist m	***	Rate	to Depart	km/r
South	: Con	der Stree	t												
2	T1	All MCs	167	2.5	167	2.5	0.194	1.1	LOSA	0.9	6.3	0.39	0.44	0.39	45.7
3	R2	All MCs	123	0.0	123	0.0	0.194	6.2	LOSA	0.9	6.3	0.39	0.44	0.39	45.7
Appro	oach		291	1.4	291	1.4	0.194	3.2	NA	0.9	6.3	0.39	0.44	0.39	45.7
East:	Belmo	ore Street													
4	L2	All MCs	172	0.6	172	0.6	0.328	5.2	LOSA	1.5	10.2	0.42	0.59	0.42	42.5
6	R2	All MCs	157	0.7	157	0.7	0.328	8.1	LOSA	1.5	10.2	0.42	0.59	0.42	31,8
Appro	oach		328	0.6	328	0.6	0.328	6.6	LOSA	1,5	10.2	0.42	0.59	0.42	40.0
North	: Cond	der Street													
7	12	All MCs	243	0.0	243	0.0	0.220	4.6	LOSA	0.0	0.0	0.00	0.33	0.00	41.2
8	T1	All MCs	147	1.4	147	1.4	0.220	0.0	LOSA	0.0	0.0	0.00	0.33	0.00	47.2
Appro	oach		391	0.5	391	0.5	0.220	2.9	NA	0.0	0,0	0.00	0.33	0.00	45.1
All Ve	hicles		1009	0.8	1009	0.8	0.328	4.2	NA	1.5	10.2	0.25	0.45	0.25	43.6

Site Level of Service (LOS) Method: Delay (NSW), Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [113(8)] 2m. 2030 PM Base Wynne Avenue and Burwood Place - Copy - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE

2 COMPLETE

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Burwood Place

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90.0 seconds (Network User-Given Cycle Time)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

Mov	Tum	May	Den	and	Ar	пуаг	Deg	Aver	Level of	95% Bad	Ol Queu	e Prop.	E#.	Number	Aver
D.		Class	E .	lows	F	ows	Salm	Delay	Service			Qued	Stoplo	f Cycles	Speed
			[Total	HV J I	Total	HV]) Veh	Dist J		Raleto	Depart	
	-	_	veh/h	%	veh/h	%	v/c	Sec	_	veh	m	_	-	-	km/l
South	ı: Wyn	ne Aveni	ie (S)												
1	L2	All MCs	9	0.0	9	0.0	0.010	13.3	LOSA	0.2	1.3	0.35	0.50	0.35	40.
2	T1	All MCs	3	0.0	3	0.0	0.010	8.8	LOSA	0.2	1.3	0.35	0.50	0.35	17.
3	R2	All MCs	447	0.0	447	0.0	* 0.476	15.9	LOS B	9.7	67.7	0.53	0.72	0,53	37.
Appro	oach		460	0.0	460	0.0	0.476	15.8	LOS B	9.7	67.7	0.53	0.72	0.53	34.
East:	Emen	ald Squar	re/Burw	ood F	Plaza (E)									
4	L2	All MCs	136	0.0	136	0.0	≈ 0.494	43:6	LOS D	5.7	39.7	0.96	0.79	0.96	23.
5	T1	All MCs	0	0.0	0	0.0	0.001	32.6	LOSC	0.0	0.1	0.86	0.51	0.86	33.
6	R2	All MCs	0	0.0	0	0.0	0.001	40.7	LOSC	0.0	0.1	0.86	0.51	0.86	25.
Appro	oach		136	0.0	136	0.0	0.494	43.6	LOS D	5.7	39.7	0.96	0.79	0.96	23.
North	: Wyn	ne Avenu	e (N)												
7	L2	All MCs	0	0.0	0	0.0	0.004	5.3	LOSA	0.0	0.1	0.04	0.04	0.04	47.
8	T1	All MCs	5	0.0	5	0.0	0.004	0.6	LOSA	0.0	0.1	0.04	0.04	0.04	45.
9	R2	All MCs	0	0.0	0	0.0	0.000	5.2	LOSA	0.0	0.0	0.04	0.53	0.04	42.
Appro	oach		5	0,0	5	0.0	0.004	0.8	LOSA	0.0	0.1	0.04	0.05	0.04	45.
West	Burw	ood Gran	nd (W)												
10	L2	All MCs	0	0.0	0	0.0	0.000	38.7	LOS C	0.0	0.0	0.86	0.52	0.86	24.
11	T1	All MCs	0	0.0	0	0.0	0.066	34.0	LOSC	0.5	3.6	0.92	0.68	0.92	31.
12	R2	All MCs	13	0.0	13	0.0	0.066	44.5	LOS D	0.5	3.6	0.92	0.68	0.92	22.
Appro	oach		13	0.0	13	0.0	0.066	44.4	LOS D	0.5	3.6	0.92	0.68	0,92	22.
All Ve	hides		614	0.0	614	0.0	0.494	22.5	LOSB	9.7	67.7	0.63	0.73	0.63	31.

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

∇ Site: [114 (5)] 1n. 2030 PM Base Belmore St and Burwood Place Exit - Copy - Copy - Copy (2025 PM EXISTING 17:30-18:30) Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE 2 COMPLETE)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site Site Category: (None) Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes | Site Scenario: 1 | Local Volumes

Moy ID	Turn	Mov	Dem	and lows		tival lows	Deg. Satn	Aver Delay	Level of Service	95% Back	Of Queue	Prop Qued		Number Cycles	Aver. Speed
					Total					T Veh.	Dist]			Depart	
			veh/h		veh/h	%	v/c	SEC		veh	m				km/h
East:	Belmo	ore Street													
5	T1	All MCs	332	0.0	332	0.0	0.170	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	oach		332	0.0	332	0.0	0.170	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	: Burw	ood Place	Exit												
7	L2	All MCs	81	0.0	81	0.0	0.060	6.2	LOSA	0.2	1.7	0.30	0.57	0.30	44.2
9	R2	All MCs	123	0.0	123	0.0	0.150	8.0	LOSA	0.5	3.8	0.46	0.74	0.46	41.9
Appn	oach		204	0.0	204	0.0	0.150	7.3	LOSA	0.5	3.8	0.40	0.67	0.40	42.8
West	Belm	ore Street													
11	T1	All MCs	213	0.0	213	0.0	0.109	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appn	oach		213	0.0	213	0.0	0.109	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
All Ve	ehides		748	0.0	748	0.0	0.170	2.0	NA	0.5	3,8	0.11	0.18	0.11	49.0

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: [1 (7)] 2030 PM Railway Pde Access - Copy - Copy (2025 PM EXISTING 17:30-18:30)

Network: [N101(10)] 2030 PM Stage 2 Complete (2030 STAGE

Output produced by SIDRA INTERSECTION Version: 10.0.5,217

Left-In Left-Out Site Category: (None) Give-Way (Two-Way)

Network Scenario: 1 | Local Volumes Site Scenario: 1 | Local Volumes

MoV ID	Tum	Mov Class	Den Fi	and ows		nval ows	Deg. Sam	Aver. Delay	Level of Service	95% Bad	Of Queue	Prop Qued		Vumber Cycles	Aver Speed
-					(Total		~,001	20.41) Ven	Clet i	2000		Depart	.,
			veh/n	%	veh/h	%	WC.	sec.		veh	m				km/h
South	Deve	elopment	Access	3											
1	L2	All MCs	218	1.9	218	1.9	0.126	5.8	LOSA	0.5	3.5	0.00	0.53	0.00	51.0
Appro	oach		218	1.9	218	1.9	0.126	5.8	NA	0.5	3.5	0.00	0.53	0.00	51.0
East:	Railw	ay Parade	9												
2	L2	All MCs	260	1.6	260	1.6	0,150	5.3	LOSA	0.6	4.2	0.00	0.53	0.00	50.2
3	TI	All MCs	524	0.0	524	0.0	0.134	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	oach		784	0.5	784	0.5	0.150	1.8	NA	0.6	4.2	0.00	0.17	0.00	52.1
West	Railw	ay Parad	e												
4	T1	All MCs	480	2.2	480	2.2	0.107	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
Appro	oach		480	2.2	480	2.2	0.107	0.0	NA	0.0	0.0	0.00	0.00	0.00	60,0
All Ve	hicles		1482	1.3	1482	1.3	0.150	1.8	NA	0.6	4.2	0.00	0.17	0.00	52.6

Site Level of Service (LOS) Method: Delay (NSW), Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

APPENDIX C - Performance Indicators

Level of Service (LoS)

Intersection performance is best measured by the indicators of Level of Service (LOS), Average Vehicle Delay (AVD) and the Degree of Saturation (DS) during peak hours.

This is defined as the assessment of a qualitative effect of factors influencing vehicle movement through the intersection. Factors such as speed, traffic volume, geometric layout, delay and capacity are qualified and applied to the specific intersection control mode, as shown in *Table 1*.

The measure of average delay assessed for traffic signal operation is over all movements. For roundabouts and priority-controlled intersections, the critical criterion for assessment is the movement with the highest delay per vehicle.

Similarly, Network and Route performance is best assessed by the Average Vehicle Delay (AVD) and LOS.

The Network performance is an index based on the operation of traffic within a given road network of linked intersections controlled by like and/or differing control methods. As with intersections, the LOA is rated between 'A' being good to 'F' being completely unsatisfactory and highly congested requiring mitigation treatment. The Route LOS may be the result of a single intersection within the network or a group of intersections. It is the engineer's or planner's responsibility to analyse and determine the critical factors impacting the network operation.

The Route performance again is an indexed value based on the AVD along a defined path. The LOS between 'A' and 'F' is derived from the AVD and reported after consideration of each lanes operation under the specific control method at each intersection in the network.

Average Vehicle Delay (AVD)

The AVD is a measure of the operational performance of a road network or an intersection. AVD is determined globally over a road network or within a cordon during an assignment model run. The AVD exhibited on comparable network models, for analogous peak periods, forms the basis of comparing the operational performance of the road network.

AVD is used in the determination of intersection LOS. Generally, the total delay incurred by vehicles through an intersection is averaged to give an indicative delay on any specific approach. Longer delays do occur but only the average over the peak hour period is reported.

Degree of Saturation (DS)

The DS of an intersection is generally taken as the highest ratio of traffic volume on an approach compared with its theoretical capacity, and is a measure of the utilisation of available green time.

The DS reported is generally of a critical movement through the intersection rather than the DS of the intersection unless equal saturation occurs on all approaches.

For intersections controlled by traffic signals, generally both queue length and delay increase rapidly as DS approaches 1.0. An intersection operates satisfactorily when its DS is kept below 0.875. When the DS exceeds 0.9, extensive queues can be expected.

Intersection Control	Performance Measure [Unit]
	Delay of critical movement(s) [seconds/vehicle]
Sign or Priority Control	Average Vehicle Delay [seconds/vehicle]
	Queue length of critical movement(s) [metres]
	Delay of critical movement(s) [seconds/vehicle]
	Degree of Saturation [ratio of vehicles to capacity]
Traffic Signal Control	Average Vehicle Delay [seconds/vehicle]
	Cycle Length [seconds]
	Queue length of critical movement(s) [metres]
	Delay of critical movement(s) [seconds/vehicle]
Doundahaut Control	Degree of Saturation[ratio of vehicles to capacity]
Roundabout Control	Average Vehicle Delay [seconds/vehicle]
	Queue length of critical movement(s) [metres]

Table D 4 Performance Indicators by Control Method

		Average delay per ve	hicle (d) in seconds	
	Unsignalised intersections	Roundabouts	Signalised intersections	All intersection types
LoS	HCM 2000 and 2016; SIDRA intersection	SIDRA intersection Recommended values	HCM 2000 and 2016; SIDRA intersection	RTA (2002)
А	d ≤ 10	d ≤ 10	d ≤10	d ≤ 14
В	10 < d ≤ 15	$10 < d \le 20$	$10 < d \le 20$	15 < d ≤ 28
С	15 < d ≤ 25	20 < d ≤ 35	20 < d ≤ 35	$29 < d \le 42$
D	25 < d ≤ 35	35 < d ≤ 50	35 < d ≤ 55	43 < d ≤ 56
Е	35 < d ≤ 50	50 < d ≤ 70	55 < d ≤ 80	57 < d ≤ 70
F	50 < d	70 < d	80 < d	70 < d

Table D 5 LOS Criteria for Intersections using Average Delay per vehicle (d) Source AUSTROADS Guide to Traffic Management – Part 3, 2020